1 Хроматография.

1.1 Задача

Реакционную массу после нитрования толуола проанализировали методом газожидкостной хроматографии с применением этилбензола в внутреннего стандарта. Определите процент качестве непрореагировавшего толуола по экспериментальным данным, если: Амасса толуола, г; В – масса внесенного этилбензола, г; Scm- площадь пика mm^2 ; S_x – площадь пика хроматограммы хроматограммы толуола, стандарта (этилбензола), $MM2 ; k_x$ поправочный коэффициент толуола; k_{cm} – поправочный коэффициент стандарта.

№ варианта	8
А, г	18,5412
В, г	2,6543
S _x , MM ²	155,3
k _x	1,01
S _{cm} , MM ²	80,1
K _{cm}	1,02

Отношение масс стандарта (B) и определяемого вещества (A_x) должно быть равно отношению площадей пиков, поэтому

$$\frac{B}{A_r} = \frac{S_{cm} * k_{cm}}{S_r * k_r},$$

где

S... - площади пиков;

k... поправочные коэффициенты.

Найдем отсюда массу определяемого вещества (толуола):

$$A_x = \frac{S_x * k_x}{S_{cm} * k_{cm}} * B = \frac{155.3 * 1.01}{80.1 * 1.02} * 2.6543 = 5,0958 \ \varepsilon.$$

Массовая доля толуола в смеси будет равна:

$$\omega_{monyon} = \frac{A_x}{A} * 100 = \frac{5,0958}{18,5412} * 100 = 27.48\%.$$

1.2 Задача

Рассчитайте процентный состав газовой смеси по следующим данным, полученным при газовой хроматографии этой смеси:

№ варианта	8			
Газ	S, MM 2	k		
Пропан	300	1,13		
Бутан	252	1.11		
Пентан	198	0,69		
Циклогекс ан	28	0,85		
Пропилен	11	0,65		

S – площадь пика хроматограммы, мм² ; k – поправочный коэффициент.

Массовая доля каждого компонента смеси рассчитывается следующим образом:

$$\omega_i = \frac{S_i * k_i}{\sum (S_i * k_i)},$$

где

S_i – площадь пика;

k_i – поправочный коэффициент.

Для расчета нам нужна сумма площадей пиков:

$$\sum (S_i * k_i) = 300 * 1.13 + 252 * 1.11 + 198 * 0.69 + 28 * 0.85 + 11 * 0.65 = 786, 29 \text{ M M}^2.$$

Найдем массовую долю пропана, бутана, пентана, циклогексана и пропилена:

$$\omega_{nponan} = \frac{300 * 1.13}{786 29} * 100 = 43.11\%$$
.

$$\omega_{\rm бутан} = \frac{252*1.11}{786,29}*100 = 35.57\%.$$

$$\omega_{\rm пентан} = \frac{198*0.69}{786,29}*100 = 17.38\%.$$

$$\omega_{\rm циклогексан} = \frac{28*0.85}{786,29}*100 = 3.03\%.$$

$$\omega_{\rm пропилен} = \frac{11*0.65}{786,29}*100 = 0.91\%.$$

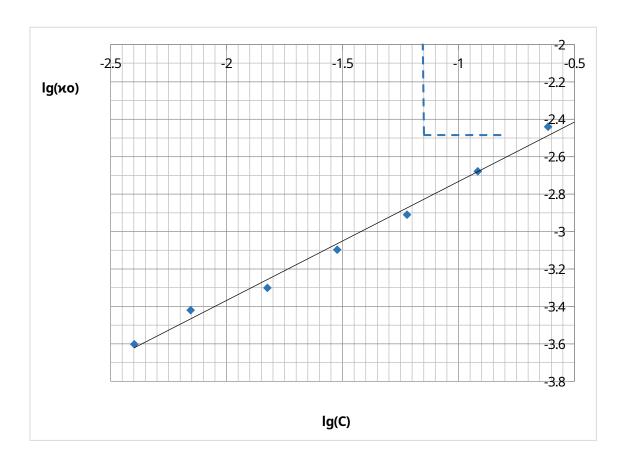
2 Кондуктометрия

2.1 Задача

Для определения концентрации HF используют зависимость удельной электропроводности (κ_0) от содержания кислоты (ϵ) в растворе:

С, моль/л	0,004	0,007	0,015	0,030	0,060	0,121	0,243
х。· 104 , Ом-1 · см-1	2,5	3,8	5,0	8,0	12,3	21,0	36,3

Постройте по этим данным калибровочный график $lg\varkappa_o = f$ (lgC) и с его помощью определите концентрацию HF, если удельная электропроводность раствора равна:


№ варианта	8
х₀ · 10⁴, Ом⁻¹ · см⁻¹	35.0

Подготовим данные для построения калибровочного графика

С, моль/л	0,004	0,007	0,015	0,030	0,060	0,121	0,243
la(C)	-	-	-	-	-	-	-
lg(<i>C</i>)	2,398	2,155	1,824	1,523	1,222	0,917	0,614
и _о *10 ⁴ , Ом ⁻ 1*см ⁻¹	2,5	3,8	5,0	8,0	12,3	21,0	36,3
la(x)	-	-	-	-	-	-	-
lg(ϰ₀)	3,602	3,420	3,301	3,097	2,910	2,678	2,440

Нам известна удельная электрическая проводимость анализируемого раствора. Найдем логарифм этой величины:

$$lg(\varkappa_o) = lg(35 * 10^{-4}) = -2.46$$

По калибровочному графику находим, что этому значению соответствует следующая величина $lg\left(C\right)$:

$$lg(C) = -0.58$$
.

Теперь вычислим концентрацию плавиковой кислоты:

$$C = 10^{-0.58} = 0.26 \frac{MO \pi b}{\pi}$$
.

2.2 Задача При кондуктометрическом титровании V мл смеси NaOH и NH $_3$ 0,0100 М HCI получили данные, представленные в таблице.

V _(HCI) , мл	0	1	2	3	4	5	6	7	8	9
и ·10³, См	6,30	5,41	4,52	3,62	3,71	4,79	5,85	6,93	9,00	12,0

Построить кривую титрования и вычислить концентрацию ($\Gamma \cdot \Lambda^{-1}$) NaOH и NH₃ в исследуемом растворе при значениях V приведённых ниже в таблице.

№ варианта	8
<i>V</i> , мл	60

Построим кривую титрования смеси оснований сильной кислотой.

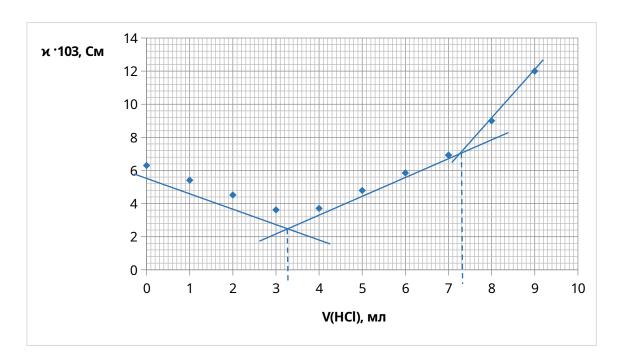


График имеет 2 излома. Первый излом соответствует эквивалентному объему HCl на титрование гидроксида натрия - V_1 (HCl) =3,5 мл. Второй излом соответствует эквивалентному объему кислоты на титрование суммы гидроксидов натрия и аммония: V_2 (HCl) =7,45 мл.

Рассчитаем концентрацию гидроксида натрия:

$$C(NaOH) = \frac{V_1(HCl) * C(HCl) * M(NaOH)}{V} = \frac{3.5 * 0.01 * 40.00}{60} = 0.0233 \, e * \pi^{-1},$$

где

M(NaOH) – молярная масса NaOH;

V - объем пробы.

Рассчитаем концентрацию NH₃:

$$C(NH_3) = \frac{(V_2(HCl) - V_1(HCl)) * C(HCl) * M(NH_3)}{V} = \frac{(7,45 - 3,5) * 0,01 * 17,03}{60} = 0,0112 \, \varepsilon * \pi^{-1},$$

где

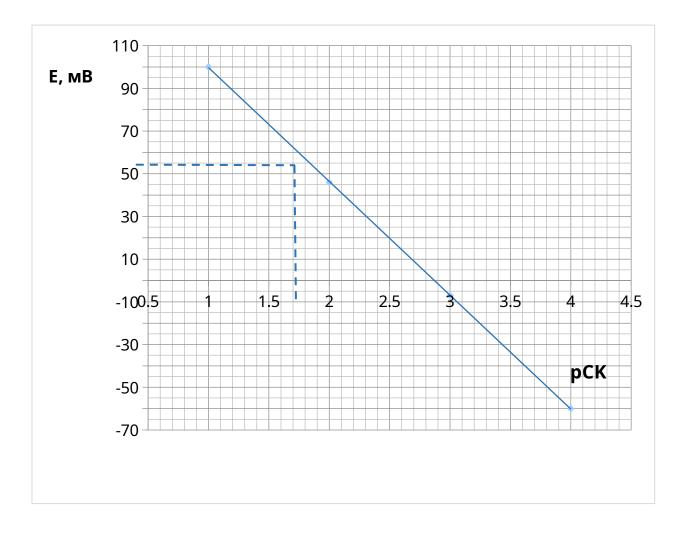
 $M(NH_3)$ – молярная масса NH_3 .

3 ПОТЕНЦИОМЕТРИЯ

3.1 Задача

В стандартных растворах соли калия с концентрацией C_{K+} были измерены электродные потенциалы калийселективного электрода относительно хлорсеребряного электрода и получены следующие данные:

С _{К+} , моль∙л ⁻¹	1,0-10-1	1,0-10-2	1,0·10 ⁻³	1,0·10-4
<i>Е</i> , мВ	100	46,0	- 7,00	- 60,0


По этим данным построть градуировочный график в координатах $E - pC_{K+}$. Навеску образца массой 0,2000 г, содержащего калий, растворили в воде, и объём довели до V (мл). Затем измерили электродный потенциал калийселективного электрода E_x в полученном растворе: Вычислить массовую долю калия w (%) в образце.

Вариан т	8
<i>V</i> , мл	400
<i>E</i> х, мВ	57

Подготовим данные для построения градуировочного графика:

Ск, моль/л	1.0*10 ⁻¹	1.0*10 ⁻²	1.0*10 ⁻³	1.0*10-4
$pC_K = -lg(C_K)$	1	2	3	4
Е, мВ	100	46,0	-7,00	-60.0

Построим калибровочный график.

Потенциалу в 57 мВ соответствует значение pC_{κ} =1,8. Рассчитаем молярную концентрацию этого раствора:

$$C_K = 10^{-1.8} = 0.0158 M$$
.

Теперь найдем массовую долю (%) калия в образце:

$$\omega(K) = \frac{C_K * M(K) * V}{m} 100 = \frac{0,0158 * 39,10 * 0,4}{0,2000} * 100 = 123.56\%,$$

где

M(K) – атомная масса калия;

V – объем раствора;

т – навеска анализируемого образца.

Такого содержания не бывает! Нельзя исключить ошибку в условии задачи.

3.2 Задача

При потенциометрическом титровании аликвотной части (*V* мл) раствора, содержащего смесь Na2CO3, NaOH, титрантом HCl с концентрацией 0,1000н получили данные:

V _т , мл	13, 5	14, 0	14,5	15,0	15,5	16,0	19,0	20,0	20,5	21,0	21,5
рН	9,4	8,9	8,6	7,9	7,0	6,7	5,8	5,2	3,9	3,0	2,7

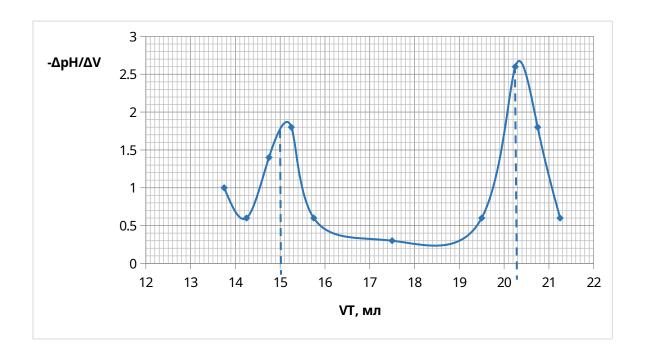
 V_T - объем титранта, мл.

Используя дифференциальную кривую титрования, определите содержание компонентов в смеси (в г/л) при значениях *V* приведённых ниже в таблице.

№ варианта	8
<i>V</i> , мл	40

Построим дифференциальную кривую титрования, используя метод численного дифференцирования. Производную будем рассчитывать следующим образом:

$$\frac{\Delta pH}{\Delta V} \approx \frac{pH_{i+1} - pH_i}{V_{i+1} - V_i}.$$


Каждому вычисленному значению частной производной соответствует объем титранта

$$V_i = \frac{V_{i+1} + V_i}{2}.$$

Поместим в таблицу результаты расчетов.

V _⊤ , мл	13,5	14,0	14,5	15,0	15,5	16,0	19,0	20,0	20,5	21,0	21,5
рН	9,4	8,9	8,6	7,9	7,0	6,7	5,8	5,2	3,9	3,0	2,7
V _⊤ , мл	13,7 5	14,2 5	14,7 5	15,2 5	15,7 5	17,5	19,5	20,2 5	20,7 5	21,2 5	
- ΔpH/ΔV	1	0,6	1,4	1,8	0,6	0,3	0,6	2,6	1,8	0,6	

Построим график дифференциальной кривой титрования.

Первый пик дифференциальной кривой титрования соответствует оттитровыванию карбоната до гидрокарбоната и щелочи (V_1 =15.2мл), а второй пик – оттитровыванию гидрокарбоната(V_2 =20.4мл), который образуется из карбоната.

Рассчитаем концентрацию карбоната натрия:

$$C_{\scriptscriptstyle M}(N\,a_{\scriptscriptstyle 2}C\,O_{\scriptscriptstyle 3}) = \frac{C\,(HCl)*(V_{\scriptscriptstyle 2}-V_{\scriptscriptstyle 1})}{V} * M\,(N\,a_{\scriptscriptstyle 2}\,C\,O_{\scriptscriptstyle 3}) = \frac{0.1*(20.4-15.2)}{40} * 106 = 1\,, 38\frac{2}{\pi}\,,$$

где

 $M\left(N\,a_{2}C\,O_{3}
ight)$ – молярная масса $N\,a_{2}C\,O_{3}.$

Теперь рассчитаем концентрацию щелочи:

$$C_{M}(NaOH) = \frac{C(HCl)*(2V_{1}-V_{2})}{V}*M(NaOH) = \frac{0.1*(2*15.2-20.4)}{40}*40 = 1,00\frac{2}{\pi},$$

где

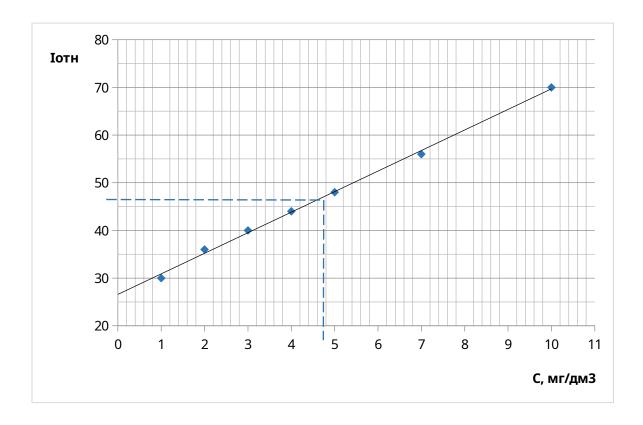
 $M\left(NaOH\right)$ – молярная масса NaOH.

4 Эмиссионная спектроскопия

4.1 Задача

Для определения содержания натрия в сточной воде содового производства использовали метод пламенной фотометрии. Непосредственное определение проводится при содержании натрия в пробе от 0,1 до 10 мг/л. Более концентрированные воды предварительно разбавляют, а менее концентрированные - упаривают. Объем исходной

пробы 500 мл, после упаривания - указан в таблице 2. Определение проводилось методом калибровочного графика. Данные для его построения приведены в табл.1. Вычислить содержание натрия (мг/л) в исследуемой сточной воде.


Таблица 1 Результаты фотометрирования стандартных растворов NaCl

Концентрация натрия, мг/дм3	1,0	2,0	3,0	4,0	5,0	7,0	10,0
Относительная интенсивность излучения (Іотн.)	30,0	36,0	40,0	44,0	48,0	56,0	70,0

Характеристики исследуемых растворов

Параметры	Варианты и исходные данные
	8
Объем пробы после упаривания, мл	250
Относительная интенсивность излучения (Іотн.)	48

Построим калибровочный график $I_{\text{отн}}$ от $C(M \Gamma / J)$.

По калибровочному графику находим содержание натрия в пробе при Iотh=48. Концентрация натрия равна $C_{\rm x}=4,90~{\rm Mr/дm^3}$. Исходная проба перед анализом была упарена, поэтому концентрация натрия в исходной сточной воде равна

$$C_{Na} = 1$$
, $\frac{30*V}{V_0} = 4$, $\frac{90*250}{500} = 2.45 \frac{M2}{\partial M^3} u\pi u 2.45 \frac{M2}{\pi}$,

где

V₀ – начальный объем пробы;

V – объем пробы после упаривания.

5 Абсорбционная спектроскопия

5.1 Задача

Воспользовавшись уравнением Бугера - Ламберта- Бера, определить параметр, означенный x, в указанных единицах.

Вар	Опреде	Реакц	Дл	ε	Тол	Ток,	В	Концен	Оптич
иан	ляемый	ия	ина		щи	делени	ІЯХ	трация	еская
Т	ион или	образ	вол		на	шкалы	l		плотн
	веществ	овани	ны,		сло				ость
	o	я,	нм.		я,	начал	после		
		окра			СМ	ьный	погло		
		шенн					щения		

		ОГО							
8	Азобензол	соедин Собств енная окраска	438	1 100	5,00	-	-	х мкг/мл	0,356

Запишем уравнение закона Бера:

$$A = \varepsilon * C * I$$
,

где

А - оптическая плотность;

ε – молярный коэффициент светопоглощения;

С - молярная концентрация раствора;

I – толщина кюветы, см.

Рассчитаем молярную концентрацию азобензола:

$$C = \frac{A}{\varepsilon * l} = \frac{0.356}{1100 * 5} = 6,47 * 10^{-5} \frac{\text{моль}}{\pi}$$

Теперь вычислим концентрацию азобензола в мкг/мл:

$$C_{M} = C * M * 1000 = 6,47 * 10^{-5} * 182,2 * 1000 = 11,8 \frac{MK2}{MR}$$

где

M – молярная масса азобензола (C₆H₅N=NC₆H₅).

5.2 Задача По приведённым данным определить концентрацию раствора в указанных единицах

Вар	Опреде	Реакц	Нача	Стандартный			Исследуемый			
иан	ляемы	ия		раствор			раствор			
Т	й ион	образ овани я окраш енног о соеди	й ток, мкА	концен трация	тол щи на сло я, с м	ток, <i>мка</i>	концен трация	тол щи на сло я, с м	ток,	

8	Cu ²⁺	Нения С аммиак ом	75	0,1 <i>г</i> спл ава, содержа щего 5,26% Си в	2,5	51,4	Си (в %) в сплаве при навеске 0,2 г в 250 <i>мл</i> ра	5,0	63,2
				100 <i>мл</i> ра створа			250 <i>мл</i> ра створа		

Сила тока пропорциональна световому потоку. Отсюда можно рассчитать оптическую плотность стандартного (A_{cm}) и анализируемого растворов ($A_x \dot{c}$:

$$A = -lg\left(\frac{I}{I_0}\right);$$

$$A_{cm} = -lg\left(\frac{51, 4}{75}\right) = 0,164;$$

$$A_x = -lg\left(\frac{63, 2}{75}\right) = 0,0743.$$

Рассчитаем концентрацию меди в стандартном растворе:

$$C_{cm} = \frac{\frac{m * \omega(Cu)}{100}}{V} = \frac{\frac{0.1 * 5.26}{100}}{0.1} = 0,0526 \frac{2}{\pi},$$

где

т - масса сплава;

 $\omega(\mathit{Cu})$ – процент меди в сплаве;

V – объем раствора.

Согласно закону Бугера-Ламберта-Бера, оптическая плотность прямо пропорциональна концентрации определяемого вещества и толщине оптического слоя. Отсюда следует, что

$$\frac{C_x}{C_{cm}} = \frac{A_x * l_{cm}}{A_{cm} * l_x}$$

Найдем отсюда концентрацию меди:

$$C_x = \frac{A_x * l_{cm}}{A_{cm} * l_x} * C_{cm} = \frac{0,0743 * 2,5}{0,164 * 5,0} * 0,0526 = 0,0119 \frac{2}{\pi}$$

где

 $l \dots$ – толщина кюветы.

Теперь рассчитаем массовую долю меди в сплаве:

$$\omega(Cu) = \frac{C_x * V_x}{m} * 100 = \frac{0.0119 * 0.25}{0.2} * 100 = 1.49\%$$

где

М() - молярные массы веществ;

т - масса анализируемого образца;

 V_x – объем анализируемого раствора.

5.3 Задача

Навеску стали, массой *m* (г) растворили в колбе вместимостью 50,0 мл. В две мерные колбы вместимостью 50,0 мл отобрали аликвоты по 20,0 мл. В одну колбу добавили раствор, содержащий 1,000 мг титана. Далее в обе колбы поместили раствор пероксида водорода и довели растворы до метки водой.

Вычислить массовую долю титана в стали, если при фотометрировании растворов получили следующие оптические плотности *Ax* и *Ax*+ст:

Вариант	Вариант т, г		Ах+ст		
8	0,6911	0,257	0,482		

Согласно закону Бугера-Ламберта-Бера, оптическая плотность прямо пропорциональна концентрации определяемого вещества и толщине оптического слоя. На этом основании

найдем массу титана в объеме пробе:

$$m_{Ti} = \frac{A_x}{A_{x+cm} - A_x * i m_{cm}} = \frac{0.257}{0.6911 - 0.257} * 1 = 0.592 \text{ Mz}, i$$

где

 m_{cm} – масса титана в добавке стандарта.

После растворения навески в исходных 50 мл, для анализа отобрали аликвоту 20 мл. Таким образом, масса титана в навеске стали будет равна:

$$m_{Ti} = \frac{0.592 * 50}{20} = 1,480 \text{ Mz}.$$

Тогда массовая доля титана в стали равна

$$\omega_{T} = \frac{m_{T}}{m} * 100 = \frac{1,480 * 10^{-3}}{0.6911} * 100 = 0.21\%,$$

где

m – масса навески стали.