МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт инженерной и экологической безопасности

(наименование института полностью)

20.03.01 Техносферная безопасность. Противопожарные системы.

(код и наименование направления подготовки, специальности)

ПРАКТИЧЕСКОЕ ЗАДАНИЕ №2

по учебному курсу «<u>Физика. Механикка. Молекулярная физика.</u>» (наименование учебного курса)

Вариант 4

Студент	Д. А. Гаврилюк	
	(И.О. Фамилия)	_
Группа	ТБбп-2206а	_
Преподаватель	И. В. Мелешко	_
	(ИО Фамилия)	

Тольятти 2023

Задача 1

Условие:

Один моль идеального газа переходит из начального состояния 1 в конечное состояние 3 в результате двух изопроцессов 1-2 и 2-3. Значения давления и объема газа в состояниях 1 и 3 равны соответственно P_1, V_1 и P_3, V_3 . Найти давление, объем и температуру газа P_2, V_2, T_2 в промежуточном состоянии 2. Изобразить процессы в координатах P-V, P-T, V-T.

Дано: СИ:

Изохорный 1-2

 $P_1 = 10^5 \, \Pi a$

 $V_1 = 30 \text{ л}$ 0,03 M^3

Изотермический 2-3

 $P_3=2*10^5 \Pi a$

 $V_3=20$ л. 0,02 M^3

Найти:

 $p_2 - ?$

 $V_2 - ?$

 T_2 -?

Изобразить:

P - V

P - *T*

V-T

Решение:

Поскольку процесс 1-2 изохорный, то $V_1 = V_2 = 0$, 03 M^3 .

Поскольку процесс 2-3 изотермический, то $T_2=T_3$

Запишем уравнение Менделеева -Клапейрона для второго состояния

газа:

$$p_2 V_2 = vR T_2;$$

 $T_2 = \frac{p_2 V_2}{vR}.$

При изотермическом процессе:

$$\frac{p_3}{p_2} = \frac{V_2}{V_3} \Rightarrow p_2 = \frac{p_3 V_3}{V_2} = \frac{2 * 10^5 \, \Pi a * 0.02 \, \text{m}^3}{0.03 \, \text{m}^3} = 1.3 * 10^5 \, \Pi a$$

 Γ де R=8, $31\frac{\mathcal{D}\mathcal{H}}{\mathcal{M}\mathcal{O}\mathcal{D}\mathcal{E}\mathcal{K}}$ - универсальная газовая постоянная.

Подставим численные значения и произведём вычисления:

$$T_2 = \frac{1.3 \cdot 10^5 \cdot 0.03}{1 \cdot 8.31} = 469 K$$

Для состояния 1 запишем уравнение Менделеева – Клапейрона:

$$p_1V_1=vRT_1;$$

$$T_1 = \frac{p_1 V_1}{vR}.$$

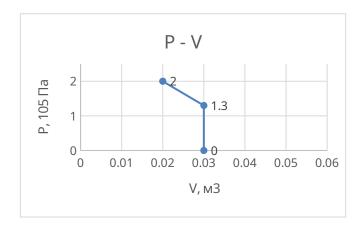
Подставим численные значения и произведём вычисления:

$$T_1 = \frac{10^5 \cdot 0.03}{1 \cdot 8.31} = 361 \, K.$$

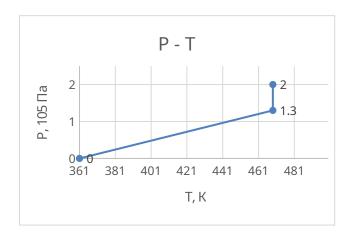
Для состояния 3 запишем уравнение Менделеева – Клапейрона:

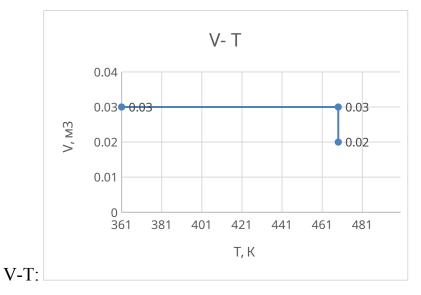
$$T_3 = 469 \text{ K}$$

Для построения графиков процессов запишем параметры газа в каждой точке.


В 1-й точке -
$$T_1 = 361K$$
, $P_1 = 10^5 \Pi a$, $V_1 = 0.03 M^3$.

Во 2-й точке -
$$T_2 = 469K$$
, $P_2 = 1,3 \cdot 10^5 \Pi a$, $V_2 = 0,03 M^3$.


В 3- й точке -
$$T_3 = 469K$$
, $P_3 = 2.10^5 \Pi a$, $V_3 = 0.02 M^3$.


Изобразим процесс в координатах P - V.

Процесс в координатах P - V:

P-T:

Ответ: T_2 = 469 K, P_2 = 1,3*10⁵ Па, V_2 = 0,03 м³.

Задача 2

Идеальный газ (N_2) совершает замкнутый цикл, состоящий из трех процессов 1-2 (изобарный), 2-3 (адиабатный), 3-1 (изотермический), идущий по часовой стрелке. Значения давления и объема газа в состояниях 1, 2 и 3 равны соответственно P_1 , V_1 , P_2 , V_2 и P_3 , V_3 . Найти термический к.п.д. цикла.

Дано: СИ:

Изохорный 1-2

 $P_1 = 10^5 \Pi a$

$$V_1=3 \text{ J}$$
 $3*10^{-3}\text{M}^3=0.003 \text{ M}^3$

Изотермический 2-3

 $P_2=2*10^5 \Pi a$

Изобарный 3-1

 Γ аз — N_2

Найти:

 η – ?

Решение:

КПД цикла вычисляется по формуле:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}.$$

Где Q_1 - количество теплоты, переданное газу за цикл от нагревателя; Q_2 - количество теплоты, отданое газом за цикл холодильнику.

Работа газа при изохорном процессе равна 0.

Изменение внутренней энергии в процессе 1-2 вычисляется по формуле:

$$\Delta U_{1-2} = \frac{i}{2} vR \left(T_2 - T_1 \right).$$

На основании первого закона термодинамики $Q_{1\text{--}2} = \Delta U_{1\text{--}2}$

Запишем уравнение Менделеева-Клапейрона для процесса 1-2

$$p_1 V_1 = v R T_1 \Rightarrow T_1 = \frac{p_1 V_1}{vR} = \frac{10^5 * 3 * 10^{-3}}{8.31} = 36 K$$

$$\Gamma$$
де $R=8,31\frac{\cancel{\square}\cancel{m}}{\cancel{m}\cancel{o}\cancel{n}\cancel{b}\cdot \cancel{K}}$ - универсальная газовая постоянная,

При изохорном процессе давление прямо пропорционально его абсолютной температуре.

$$\frac{p_2}{p_1} = \frac{T_2}{T_1} \to T_2 = \frac{p_2 T_1}{p_1} = \frac{2*10^5 *36}{10^5} = 72K$$

Тогда
$$Q_{\text{1--2}} = \Delta U_{\text{1--2}} = \frac{5}{2}*8,31*(72-36) = 747,9$$
 Джс

i=5 - степень свободы молекул двухатомного газа.

Учитывая, что для изотермического процесса 2-3 $^{\Delta U}_{2-3}=0$, по первому закону термодинамики, получаем:

$$\Delta U_{2-3} = Q_{2-3} - A_{2-3};$$

$$Q_{2-3} = A_{2-3}.$$

Работа газа при изотермическом процессе вычисляется по формуле:

$$A_{2-3} = v RT_I \ln \frac{V_3}{V_2}$$
.

Согласно уравнению Менделеева – Клапейрона для третьего состояния газа, получаем:

$$vRT_3 = p_3V_3$$
.

После подстановки, получаем:

$$Q_{2-3} = p_3 V_3 \cdot \ln \frac{V_3}{V_2}.$$

Найдём объём азота V_3 для третьего состояния.

Для изобарного процесса 3-1 $p_3 = p_1$.

Для изотермического процесса 2-3, имеем:

$$p_2V_2 = p_3V_3;$$

$$\frac{p_3}{p_2} = \frac{V_2}{V_2} \Rightarrow V_3 = \frac{p_2V_2}{p_2} = \frac{2*10^5*3*10^{-3}}{10^5} = 6*10^{-3} M^3$$

$$A_{2-3} = Q_{2-3} = 6*10^{-3}*10^{5} \ln \frac{6*10^{-3}}{3*10^{-3}} = 1200 \, \text{Джc}$$

Работа газа при изобарном процессе 3-1 вычисляется по формуле:

$$A_{3-1} = P_1 (V_1 - V_3).$$

Подставим численные значения и произведём вычисления:

$$A_{3-1} = 10^5 \cdot (3 \cdot 10^{-3} - 6 \cdot 10^{-3}) = -300 \, \text{Дж}.$$

Изменение внутренней энергии в процессе 3-1 вычисляется по формуле:

$$\Delta U_{3-1} = \frac{i}{2} v R (T_1 - T_3).$$

Применим уравнение Менделеева - Клапейрона для первого и третьего состояний газа:

$$p_1 V_1 = v RT_1;$$

$$p_1 V_3 = v RT_3.$$

Находим разность второго и первого уравнений:

$$p_1 V_3 - p_1 V_1 = v RT_3 - v RT_I;$$

 $vR(T_1 - T_3) = p_1(V_1 - V_3).$

После подстановки в формулу изменения внутренней энергии, получаем:

$$\Delta U_{3-1} = \frac{i}{2} p_1 (V_1 - V_3);$$

$$\Delta U_{3-1} = \frac{i}{2} A_{3-1} = \frac{5}{2} * (-300) = -750 \text{Дж}$$

Вычисляем количество теплоты Q_{3-1} , полученное газом в процессе 3-1, применяя первый закон термодинамики:

$$\Delta U_{3-1} = Q_{3-1} - A_{3-1};$$

$$Q_{3-1} = \Delta U_{3-1} + A_{3-1};$$

$$Q_{3-1} = \frac{i}{2} A_{3-1} + A_{3-1};$$

$$Q_{3-1} = \frac{i+2}{2} A_{3-1}.$$

Подставим численные значения и произведём вычисления:

$$Q_{1-2} = \frac{5+2}{2} \cdot (-300) = -1050 \, \text{Дж}.$$

Количество теплоты, полученное газом за цикл от нагревателя:

$$Q_1 = 747,9 + 1200 = 1947,9$$
Джс.

Количество теплоты, отданое газом за цикл холодильнику:

$$Q_2 = 1050 Дж$$

Теперь вычисляем КПД цикла:

$$\eta = 1 - \frac{1050}{1947,9} = 0,46.$$

Ответ:
$$\eta = 0,46$$

Задача 3

Условие:

Идеальный газ находится в однородном поле тяжести Земли. Молярная масса газа $M=29*10^{-3}$ кг/моль. Абсолютная температура газа меняется с высотой h по закону $T(h)=T_0(1+ah)$. Найти давление газа P на высоте h. На высоте h=0 давление газа $P_0=10^5$ Па.

Дано:

$$M = 29 \cdot 10^{-3} \frac{\kappa 2}{MOJb}$$
;

$$T(h) = T_0(1 + ah);$$

$$h=0 M$$
;

$$p_0 = 10^5 \Pi a$$
.

$$T_0 = 300 \text{ K},$$

$$a = 10^{-5} M^{-1}$$

$$h = 400 \text{ M}.$$

Найти:

P-?

Решение:

Применим барометрическую формулу:

$$p = p_0 e^{-\frac{Mgh}{RT}}.$$

$$g=9,81\frac{M}{c^2}$$
 - ускорение свободного падения, $R=8,31\frac{DM}{MOЛь\cdot K}$ _ универсальная газовая постоянная.

Учитывая условие задачи, получаем:

Подставим численные значения и вычислим:

$$p = 10^5 \cdot e^{-\frac{2910^{-3}9,81400}{8,31300(1+10^{-5}400)}} = 99998,859 \Pi a.$$

Ответ: $p = 99998,859 \Pi a$.