Рубежный контроль к разделу 7

- 1. Прочитать документацию, изучить интерфейс, посмотреть примеры, и запустить инструментальное средство для построения экспертных систем. FisPro, например. https://www.fispro.org/
- 2. Реализовать примеры лабораторной работы.
- 3. Реализовать задачи лабораторной работы.
- 4. Отчет с описанием проделанной работы со скриншотами (на которых видно ваш рабочий стол) прикрепить в ЭИОС.

Лабораторная работа РЕШЕНИЕ ЗАДАЧ УПРАВЛЕНИЯ И НАБЛЮДЕНИЯ МЕТОДАМИ НЕЧЕТКОЙ ЛОГИКИ

Цель работы

Целью лабораторной работы является ознакомление с инструментальным средством FisPro, а также изучение основ проектирования нечетких систем управления с помощью данного программного средства.

1. Краткие теоретические сведения

Нечеткая логика используются тех случаях, когда построение, И реализация математической a затем модели затруднено, или не представляется возможным причине моделируемой сложности (процесса), системы наличия неопределенностей, сопровождающих процессы, протекающие в системе.

Основными понятиями нечеткой логики являются понятия: лингвистическая переменная, нечеткие множества, функции принадлежности.

Лингвистическими называются переменные, значениями которых являются термы (слова, предложения). С термином "лингвистическая переменная" можно связать любую физическую переменную, для которой нужно иметь больше значений, нежели,

да и нет. Значения лингвистической переменной принято называть термами.

Принадлежность каждого точного значения к одному из термов определяется с помощью функций принадлежности. Существует несколько типов стандартных функций принадлежности: треугольная (trimf), трапецеидальная (trapmf), гауссова (gaussmf), двойная гауссова (gauss2mf), обобщенная колоколообразная (gbellmf), сигмоидальная (dsigmf), произведение двух сигмоидальных функций (psigmf), Z-функция, S-функция, Ріфункция.

В целом процесс вычисления в нечетких системах происходит в несколько этапов:

- 1) Фаззификация процесс перехода от "четкого" (измеренного, например t = 70) значения к "нечеткому" ($t = cpe \partial n g g$).
- 2) Нечеткий логический вывод. На данном этапе на основе правил, заложенных на этапе проектирования в базу правил нечеткой системы, происходит определение значения выходной переменной.

Данные правила описывают отношения между лингвистическими переменными помощью нечетких c высказываний, т. е. предложений сформулированных в виде "Если -То" (нечеткие инструкции). При наличии двух входных величин "Если – То" правила состоят из двух условий и объединяются логической операцией AND или OR. Совокупность нечетких правил (нечетких инструкций) принято называть алгоритмом нечеткого вывода. Например, Если t=средняя То Р=высокая. Как видно, значение выходной переменной в результате нечеткого логического вывода также является нечетким.

3) На последнем этапе, который принято называть дефаззификацией, осуществляется переход от нечетких значений к четким. Дефаззификация возможна одним из следующих методов: метод центра тяжести, модифицированный метод тяжести, метод максимума, метод правого максимума.

2.Описание пакета FisPro

FisPro (Fuzzy Inference System Professional) - это профессиональное программное обеспечение для проектирования, разработки и тестирования систем нечеткого вывода, базирующихся на математическом аппарате нечеткой логики (НЛ).

FisPro обладает широкими возможностями для создания и работы систем нечеткого вывода, включая возможности автоматического обучения систем и создания баз нечетких правил, является свободнораспространяемым программным продуктом. (https://www.fispro.org/).

3. Проектирование нечетких систем в FisPro.

Главное окно программы представлено на рис. 1.1. Здесь в поле *Name* задается имя системы, в полях *Input* и *Output* входные и выходные переменные проектируемой системы.

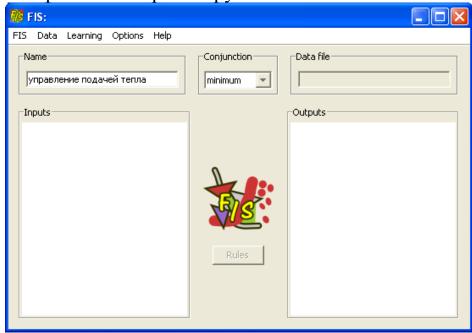


Рис. 1.1. Окно программы FisPro

Рассмотрим этапы проектирования нечетких систем с помощью программы FisPro на следующем примере.

Пример 1. Создать нечеткую систему управления процессом подачи тепла в зависимости от измеренного значения температуры.

- 1) В самом начале работы необходимо выполнить команды *Fis/ New* и в поле *Name* задать имя новой системы. Например, «управление подачей тепла».
- 2) Зададим входные (измеряемые) и выходные (вычисляемые) переменные: для этого нужно выполнить команды *Fis*, *Inputs (Outputs)*, *New inputs (New Outputs)*, в открывшемся окне задаем имя переменной, например, «Температура», открыв меню **Range**, указываем диапазон изменения значений этой переменной (рис. 1.2).

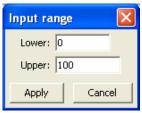


Рис. 1.2. Диапазон изменения значений переменной «Температура»

После нажатия кнопки Apply, нужно выполнить команду *MFs/New MFs*, чтобы задать термы и функции принадлежности переменной. Здесь (рис. 1.3) в поле *Name* указывается название терма, *Type* — тип функции принадлежности (*trapezoidal* — трапецеидальная функция принадлежности, *triangular* — треугольная и т.д.)

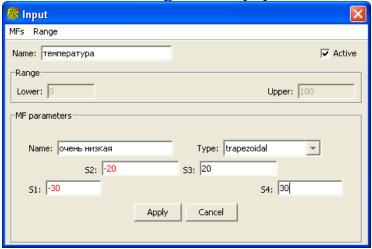


Рис. 1.3

Для лингвистической переменной Температура зададим следующие термы в соответствии с табл. 1.1.

Таблица 1.1

Название терма	Тип функции	Диапазон изменения
(Name)	Принадлежности	(Params)
	(Type)	
Очень низкая	трапецеидальная	[-30 -20 20 30]
Низкая	треугольная	[10 30 50]
Средняя	треугольная	[30 50 70]
Высокая	треугольная	[50 70 90]
Очень высокая	трапецеидальная	[70 80 120 130]

Окно редактора функций принадлежности для переменной «температура» представлено на рис. 1.4.

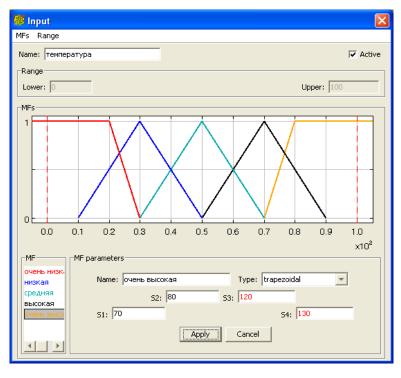
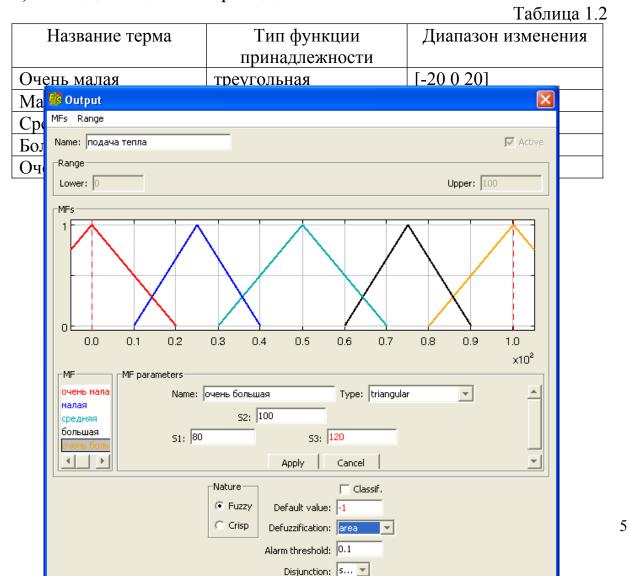



Рис. 1.4

Аналогично задаются термы и определяются функции принадлежности для выходной переменной Подача_тепла (рис. 1.5). Исходные данные приведены в табл. 1.2.

Рис. 1.5

1.3 Чтобы создать базу правил, нужно сначала сформулировать предложения в форме ЕСЛИ – ТО, куда бы входила введенная нами переменная Температура:

ЕСЛИ Температура = очень низкая То Подача воды = очень большая

ЕСЛИ Температура =низкая ТО Подача_воды =большая

ЕСЛИ Температура = средняя ТО Подача воды = средняя

ЕСЛИ Температура = высокая ТО Подача воды = малая

ЕСЛИ Температура = очень высокая ТО Подача воды = очень малая

Чтобы внести эти правила в базу правил необходимо нажать на кнопку *Rules* в главном окне программы, далее выполнить команду *New Rule* меню *Rules*.

На рис. 1.6 изображено окно редактора базы знаний после ввода 5 правил.

Рис. 1.6. Окно редактора базы правил

1.4 После того как база правил создана можно приступить к этапу логического вывода, для этого нужно выполнить команду *In- fer* меню *FIS* в главном окне программы.

В левой части окна в графической форме представлены функции принадлежности входной переменной Температура, в

правой — выходной переменной Подача_тепла (рис. 1.7). Изменять значения входной переменной можно передвигая бегунок или же задавать числовые значения непосредственно в поле *Температура*.

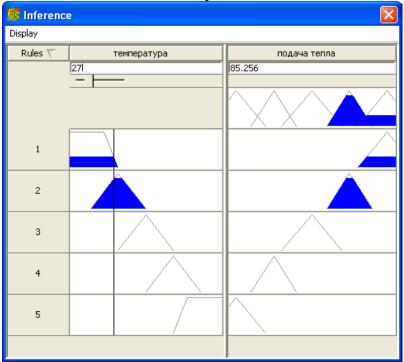


Рис. 1.7. Логический вывод

1.5 Просмотр поверхности выхода.

Для того чтобы перейти к окну просмотра поверхности выхода выполнить команду *System Response*/ *Section* пункта меню *Fis* в главном окне.

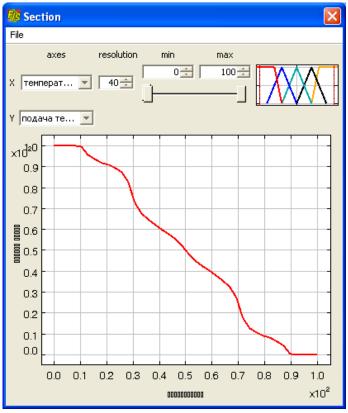


Рис. 1.8. Просмотр поверхности выхода

Пример 2. Построить непрерывную зависимость между двумя наблюдаемыми переменными технологического процесса на основании их дискретных реализаций.

Задача заключается в построении нечеткой аппроксимирующей системы, отображающей зависимость между переменными х и у, заданную с помощью табл. 1.3.

			Таблица 1.3						
X	-1	-0.6	-0.4	0	0.5	0.7	1	2	4
y	1	0.37	0.15	0	0.24	0.5	1	4	16.5

- 1. Создать новую нечеткую систему «аппроксимация функции».
- 2. Назвать входную переменную как \boldsymbol{x} , выходную как \boldsymbol{y} . Задать диапазоны изменения аргумента и значения функции.
- 3. Перейти в редактор функций принадлежности переменной x. В качестве типа функции принадлежности выбрать гауссова функция принадлежности, в полях Name и Mean задать исходные значения переменной x из таблицы, в поле $standard\ deviation$ указывается «отклонение».

Задать функции принадлежности для выходной переменной y: тип функций принадлежности — discrete, в поле defuzzification

указать *sugeno* (т.е. дефаззификация выполняется по алгоритму Сугено), в поля *Name* и *Value* ввести указанные в таблице значения переменной v.

- 4. Задать правила нечеткого вывода в редакторе правил.
- 5. Открыть окно нечеткого вывода. Проверить, как система определяет значения выходной переменной.
 - 6. Посмотреть поверхность выхода.

4. Задания к лабораторной работе

4.1 Создать модель движения автомобиля по трассе.

Входные величины:

- 1. расстояние от автомобиля до препятствия (изменяется в пределах от 0 до 500),
 - скорость автомобиля (0 200).

Выходная величина:

Сила торможения (0 - 100).

Термы для лингвистических переменных расстояние и скорость: очень_мало (VS), мало (S), средне (M), велико (B), очень велико (VB).

Для лингвистической переменной сила_торможения задать следующие термы: близка_к_нулю (Z), четверть (OQ), половина (H), три четверти (TQ), полная (FU).

Выбор формы функции принадлежности и диапазон изменения термов осуществляется аналогично случаю с одной входной переменной.

Исходные данные для моделирования представлены в табл. 1.4-1.7:

Таблица 1.4

Переменная "Скорость"

Название терма	Тип функции	Диапазон изменения
(NAME)	принадлежности (ТҮРЕ)	(PARAMS)
Очень малая (VS)	трапецеидальная	[0 0 20 60]
Малая (S)	треугольная	[20 60 100]
Средняя (М)	треугольная	[60 100 140]
Большая (В)	треугольная	[100 140 180]
Очень большая (VB)	трапецеидальная	[140 180 200 200]

Таблица 1.5

Переменная "Расстояние"

Название терма	Тип функции	Диапазон изменения

(NAME)	принадлежности (ТҮРЕ)	(PARAMS)
Очень малая (VS)	трапецеидальная	[0 0 50 150]
Малая (S)	треугольная	[50 150 250]
Средняя (М)	треугольная	[150 250 350]
Большая (В)	треугольная	[250 350 450]
Очень большая (VB)	трапецеидальная	[350 450 500 500]

Таблица 1.6

Переменная "Сила торможения"

	<u>, t</u>	
Название терма	Тип функции	Диапазон изменения
(NAME)	принадлежности	(PARAMS)
	(TYPE)	
Близка к нулю (Z)	трапецеидальная	[0 0 10 30]
Четверть (OQ)	треугольная	[10 30 50]
Половина (Н)	треугольная	[30 50 70]
Три четверти (TQ)	треугольная	[50 70 90]
Полная (FU)	трапецеидальная	[70 80 100 100]

Таблица 1.7 База правил для задачи управления силой торможения автомобиля

Скорость									
e		VS	S	M	В	VB			
NHR	VS	Н	TQ	FU	FU	FU			
СТО	S	OQ	Н	TQ	FU	FU			
	M	Z	OQ	Н	TQ	FU			
Pac	В	Z	Z	OQ	Н	TQ			
	VB	Z	Z	Z	OQ	Н			

4.2. Создать нечеткую модель контроля уровня воды в баке

Постановка задачи: имеется объект управления в виде бака с водой, к которому подходят две трубы: через одну трубу, снабженную краном, вода втекает в бак, через другую — вытекает. Подачу воды в бак можно регулировать, больше или меньше открывая кран. Контролировать уровень воды в баке можно, например, на основе следующих правил:

- 1) ЕСЛИ уровень соответствует заданному ТО кран без изменения
- 2) ЕСЛИ уровень низкий ТО кран быстро открыть
- 3) ЕСЛИ уровень высокий ТО кран быстро закрыть
- 4) ЕСЛИ уровень соответствует заданному И его прирост положительный ТО

кран медленно закрывать.

5) ЕСЛИ уровень соответствует заданному И его прирост отрицательный ТО кран медленно открывать.

5. Требования к отчету

Отчет должен содержать титульный лист, цель работы, задания на лабораторную работу, исходные данные для моделирования; графики функций принадлежности; выводы по работе, ответы на контрольные вопросы.

6. Контрольные вопросы

- 1. Какие переменные называются лингвистическими?
- 2. Какие этапы включает в себя процесс проектирования нечетких систем?
- 3. В чем заключается процесс фаззификации?
- 4. В чем заключается процесс дефаззификации?
- 5. Какие методы дефаззификации были использованы вами при построении нечетких систем? В чем эти методы заключаются?
- 6. Как формулируются правила нечеткого вывода для случая одной входной переменной, для случая двух входных переменных?