КАРАГАНДИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра терапевтической стоматологии с курсом ортопедической стоматологии

На тему: "Современные методы дезинфекции и стерилизации стоматологических инструментов".

Выполнила: Ст. гр. Стом.4-008

Мусаева Ж.З.

Содержание

Введение

Химическая дезинфекция

Контроль качества предстерилизационной очистки

ТЕХНИКА ПОСТАНОВКИ АЗОПИРАМОВОЙ, АМИДОЛИРИНОВОЙ,

ФЕНОЛФТАЛЕИНОВОЙ ПРОБ

Стерилизация

Контроль качества стерилизации

ЗАКЛЮЧЕНИЕ

Список использованной литературы

ВВЕДЕНИЕ

Одной из важнейших условий для проведении стоматологических мероприятий является обеспечение современным дезинфекционным и стерилизационным оборудованием, отвечающим установленным требованиям безопасности, качества и эффективности.

Стерилизация - уничтожение всех форм патогенных и непатогенных микроорганизмов.

Стерилизации подвергаются изделия медицинского назначения, соприкасающиеся с раневой поверхностью, кровью, с диагностическими и лекарственными препаратами, вводимыми парентерально, а также инструментарий, который при контакте со слизистыми оболочками может вызвать их повреждение.

Процесс стерилизации проводится поэтапно и включает в себя:

предварительную дезинфекцию;

предстерилизационную очистку;

собственно стерилизацию;

контроль качества стерилизации.

Перед предстерилизационной очисткой и стерилизацией **дезинфекции подвергаются** изделия медицинского назначения, использованные при:

гнойных операциях;

оперативных манипуляциях:

инфекционных больных;

пациентов, являющихся носителями патогенных микроорганизмов и HBs-Ag, перенесших гепатит с неуточненным диагнозом;

пациентов, относящихся к группам риска заболевания СПИДом, гепатитом;

изделия, использованные для введения живых вакцин;

все изделия при наличии эпидемиологических показаний в регионе.

Дезинфекция - удаление или уничтожение живых возбудителей инфекционных болезней в (на) абиотических объектах окружающей среды.

Дезинфекция медицинских изделий проводится на месте их использования (в отделениях, кабинетах) с применением физических и химических агентов. Наиболее надежной принято считать физическую дезинфекцию.

Обеззараживание физическими методами представлено в трех вариантах.

- 1. Кипячение в дистиллированной воде в течение 30 минут или в 2,0% растворе питьевой соды (15 минут) при полном погружении предмета.
- 2. Обработка водяным насыщенным паром под избыточным давлением (0,5 кгс/см2) при температуре 110°С, время выдержки 20 минут, осуществляется в паровых стерилизаторах или дезинфекционных камерах.
- 3. Дезинфекция сухим горячим воздухом при температуре 120°C с экспозицией 45 минут, для чего используются воздушные стерилизаторы (сухожаровые шкафы).

Химическая дезинфекция

Применяются различные химические вещества и их сочетания (дезинфектанты). Основные дезинфицирующие агенты и режимы химической дезинфекции представлены в табл. 2,3

Таблица 2 Химический метод дезинфекции изделий из полимерных материалов и резин

цезинфицирующий агент	Сонцентрация, %	Время выдерж- ки, мин	Условия проведе- ния дезинфекции
Хлорамин	1,0 5,0 3,0	30 240 60	
Перекись водорода	3,0 3,0 4,0	80 180 90	Попное погружение в раствор изделия или 2-кратное протира- ние салфеткой из бязи с интервалом между протираниями 15 минут
Формалин	3,0 10,0 3,0	30 60 30	
Дезоксон-1	0,1	15	
Гибитан	2,5	30	

Таблица 3

Химическая дезинфекция изделий из стекла, коррозийностойкого металла, полимерных материалов

Дезинфицирующий агент	Концентрация, %	Условия проведения дезинфекции
Дихлор-1	1,0 3,0 3,0	Двукратное протирание салфеткой из бязи или марли с интервалом между протираниями 10—15 минут
Сульфохлорантин	0,1 1,0 0,2	
Перекись водорода с 0,5% раствором моющего средства	3.0 3,0 4,0	
Нейтральный гипохлорид кальция	0,25 1,0	

Примечание: режим дезинфекции дан в трех вариантах:

при гнойных заболеваниях, кишечных и воздушно-капельных инфекциях бактериальной и вирусной этиологии;

при туберкулезе;

при вирусных гепатитах.

Температура дезинфицирующих растворов не менее 18°C.

Предстерилизационная обработка стоматологического инструментария

Предстерилизационная очистка предназначена для удаления с изделий белковых, механических и лекарственных загрязнений с целью усиления эффекта последующей (см. табл. в разделе "Пропедевтика хирургической стоматологии").

Очистке подвергается инструментарий после его использования и предварительной дезинфекции. Ее осуществляют ручным или механизированным способом в моющих растворах. Рецептуры моющих растворов представлены в табл. 4.

Таблица 4
Рецептура моющих растворов

Наименование компонентов	Пропорции компонентов на 1 дм ³ раствора	Условия применения
Средство «Биолот», г Сода питьевая, см	3,0 997,0	При механизированной очистке
Средство «Виолот», г Вода питьевая, см ³	1,5 998,5	При механизированной очистке ротационным методом
Средство «Биолот», г Вода питьевая, см ³	5,0 995,0	При ручной очистке
Раствор перекиси водо- рода, см ³ по концентра- ции 30,0%	15,0	При механизированной и ручной очистке
Моющее средство («Про- гресс», «Маричка», «Ай- иа», «Астра», «Лотос», «Лотос-автомат»), г Вода питьевая, см ³	5.0 До 1 дм ³	При механизированной и ручной очистке
Раствор перекиси водо- рода, см ³ по концентра- ции 30,0%	. 15,0	
Моющее средство («Ло- тос», «Лотос-автомат»), г Ингибитор коррозии оле- ат натрия, г Вода питьевая, см ³		При механизированной и ручной очистке

Для уменьшения коррозии металлических предметов, обрабатываемых в растворах с перекисью водорода, рекомендуется применять ингибитор коррозии - 0,14% p-p олеата натрия.

Процесс очистки включает в себя:

ополаскивание проточной водой по 30 с на предмет;

замачивание в моющем растворе при полном погружении изделия в течение 15 минут, температура раствора 50°С (если используется средство "Биолот" температура 40"С);

мойка каждого изделия в моющем растворе щеткой по 30 с каждый предмет;

ополаскивание в проточной воде 3-5 мин;

ополаскивание в дистиллированной воде 30 с;

сушка горячим воздухом при 85 "С до полного исчезновения влаги.

Пользоваться моющим раствором можно до загрязнения, о чем свидетельствует появление его розовой окраски. Раствор, содержащий "Биолот", применяют однократно. Температуру растворов в процессе очистки не поддерживают. Неизмененный раствор можно подогревать до 6 раз.

Инструменты с коррозийными пятнами и наличием оксидной пленки очищают химическим способом (не более двух раз в квартал). Для этого используется специальный состав. Уксусная кислота - 5,0 г (по 100% концентрации), хлорид натрия-1,0 г, вода дистиллированная - до 100,0 см3. В растворе изделия замачивают, а затем промывают проточной водой. Экспозиция для скальпелей из нержавеющей стали - 2 минуты, для инструментов с оксидной пленкой - 3 минуты, при сильном коррозийном поражении - 6 минут с механической очисткой ершом или ватномарлевым тампоном.

Контроль качества предстерилизационной очистки

Качество предстерилизационной очистки определяют путем постановки химических реакций на наличие:

крови и белковых загрязнений (азопирамовая и амидопириновая пробы);

остаточных количеств щелочи моющих растворов (фенолфталеиновая проба);

жира (проба с Суданом III).

Контролю качества очистки подлежит 1% изделий каждого наименования, обработанных в смену.

Азопирамовая проба

Приготовление реактива. 100 г амидопирина и 1,0-1,5 г солянокислого анилина смешивают в сухой посуде, затем заливают 95% этиловым спиртом до 1,0 литра. Смесь тщательно перемешивают. Реактив готов после полного растворения компонентов. Срок хранения раствора в холодильнике в плотно закрытой емкости 2 месяца, при комнатной температуре - не более 1 месяца.

Перед постановкой пробы готовят рабочий раствор. Смешивают равные объемные количества вышеуказанного реактива (азопирам) и 3% раствора перекиси водорода. Проба должна быть поставлена в течение 30-40 минут. В противном случае возможно спонтанное окрашивание реактива.

Амидопириновая проба

Для постановки пробы необходимы: 5% раствор амидопирина (на 95% этиловом спирте), 30% раствор уксусной кислоты и 3% раствор перекиси водорода. Последние два реактива готовят на дистиллированной воде. Рабочий раствор получают путем смешивания равных количеств этих растворов.

Фенолфталеиновая проба

Применяют 1% спиртовый раствор фенолфталеина. Раствор можно использовать в течение месяца, при условии его хранения в холодильнике.

ТЕХНИКА ПОСТАНОВКИ АЗОПИРАМОВОЙ, АМИДОЛИРИНОВОЙ, ФЕНОЛФТАЛЕИНОВОЙ ПРОБ

Наружные поверхности изделий протирают рабочим раствором реактива или наносят несколько капель. Для контроля очистки шприцев в них вносят 3-4 капли реагента и несколько раз продвигают поршнем. Затем реактив через 30-60 секунд вытесняют на белую марлевую салфетку.

При положительной азопирамовой пробе немедленно или не позднее 1 минуты появляется фиолетовое, затем розово-сиреневое или буроватое окрашивание реактива.

Положительная амидопириновая проба сопровождается синефиолетовым окрашиванием реактива. Окрашивание реактивов, наступившее позже 1 минуты, не учитывается.

Фенолфталеиновая проба считается положительной при появлении розового цвета реактива.

Проба с Суданом III

Растворяют 0,2 г измельченной краски судан III и 0,2 г метиленового синего в 70 мл подогретого до 60°С 95% этилового спирта. Затем добавляют 10 мл 20-25% раствора аммиака и 20 мл дистиллированной воды. Приготовленный раствор может храниться в плотно закрытом флаконе в холодильнике до 6 месяцев.

Реактивом смачивают поверхность изделия, которое могло быть загрязнено жирами. Через 10 секунд краситель обильно смывают водой. Появление пятен, окрашенных в желтый цвет, свидетельствует о жировом загрязнении.

Стерилизация

Стерилизацию проводят паровым, воздушным и химическим методами. Выбор метода зависит от характеристик изделий, подвергающихся стерилизации.

Паровой метод

Действующий агент - водяной насыщенный пар под избыточным давлением. Стерилизация осуществляется в паровых стерилизаторах. Применяется один из трех режимов (табл. 5):

Таблица 5 Параметры парового метода стерилизации

Давление пара, кгс/м ²	Температура,°С	Экспозиция, мин
2,0 ± 0,2	132 ± 2	20,0
1,1 ±0,2	120 ± 2	45,0
0,5 + 0,05	110± 2	180,0

Рекомендуется для изделий из коррозиестойкого металла, стекла, изделий из резины, латекса и отдельных полимерных материалов.

Все изделия, простерилизованные в стерилизационных коробках без фильтров, в двойной мягкой упаковке из бязи или в пергаментной бумаге и прочих разрешенных материалах, считаются стерильными в течение 72 часов. В случаях стерилизации в коробках с фильтрами этот срок увеличивается до 20 суток. По истечении указанных сроков предметы подвергаются повторной стерилизации.

Воздушный метод

Действующий агент - сухой горячий воздух. Используются воздушные стерилизаторы. Стерилизация осуществляется в одном из двух режимов:

- 1. Первый: температура 180°С, время выдержки 60 мин.
- 2. Второй: температура 160°C, время выдержки 150 мин.

Метод рекомендуется для изделии из металла, стекла и силиконовой резины. Изделия, простерилизованные в разрешенном упаковочном материале, могут храниться, в течение 20 суток. Если стерилизация данным методом производилась без упаковки, то стерильный материал должен быть использован сразу после стерилизации.

Химический метод

Используются растворы химических веществ и специальные газы.

Перекись водорода - 6% раствор. Применяется для стерилизации предметов из полимерных материалов, резин, стекла, коррозиестойких металлов. Изделие погружается в раствор на 360 минут при температуре стерилизационного раствора 18°C. Экспозиция может укорачиваться до 180 минут, если раствор изначально подогреть до 50°C (температура в процессе стерилизации не поддерживается). Готовый раствор перекиси водорода можно хранить в закрытой емкости в темном месте 7 суток. По истечении этого срока раствор применяется после химического переконтроля на содержание активно действующего вещества.

Дезоксон-1 (1% раствор уксусной кислоты) применяется по той же технологии. Температура раствора должна быть не ниже 18°C, время выдержки - 45 минут. Раствор дезоксона-1 используется только в течение одних суток.

40% Пары раствора формальдегида в этиловом, спирте. Стерилизацию проводят в микроанаэростатах или в дополнительно оборудованной скороварке "Минутка". Предметы упаковывают двумя слоями полиэтиленовой пленки толщиной 0,06-02 мм, пергамента и другими разрешенными упаковочными мате - риалами. Режим стерилизации: температура в камере 80°C, количество рабочего раствора - 375,0 мг/дм!!. Время выдержки для изделий из полимерных материалов - 180 минут, для изделий из металла и стекла - 120 минут. Простерилизованный материал в упаковке из полиэтиленовой пленки может храниться 5 лет. В иной упаковке стерильность сохраняется 20 суток.

Предметы из пластмасс и резин, контактирующих с кровью, подвергаются предварительной дегазации (48 часов при комнатной температуре).

Смесь ОБ (окись этилена с бромистым метилом 1: 2,5 по весу) и окись этилена - газообразные вещества. Применяемое оборудование - микроанаэростат, специально оборудованная скороварка "Минутка". Стерилизуют предметы в упаковке из двух слоев (двойные пакеты из рекомендованных материалов). Стерилизация проводится при температуре 18°C, 35°C и 55°C. Срок хранения изделий после стерилизации в полиэтиленовой пленке - 5 лет, в иной упаковке до 20 суток.

Простерилизованные предметы применяются после обязательной дегазации (газы токсичны для человека и животных; в вентилируемом помещении. Точные сроки дегазации указаны в ТУ (технические условия) для конкретных изделий.

Наибольшие трудности возникают при дезинфекции наконечников. Согласно инструкции Главного СЭУ Министерства здравоохранения РФ дезинфекция стоматологических наконечников проводится путем тщательного двукратного протирания наружных частей и канала для бора стерильным ватно-марлевым тампоном, смоченным 1 % р-ром хлорамина, 2 % р-ром лизоформина. Интервал между протираниями 15 минут. Для стерилизации наконечников используют масляные стерилизаторы.

Контроль качества стерилизации

Контроль качества стерилизации осуществляется физическим, химическими и бактериологическими методами. Физический и химический методы используются в оперативном контроле технологического цикла стерилизации, т.е. результаты учитываются в процессе стерилизации или сразу после ее окончания.

Физический метод

Метод предполагает измерение температуры, давления и времени.

Контроль температурного режима проводится с помощью максимальных термометров. Диапазон измерения от 0 до 150°С для паровых стерилизаторов, от 0 до 200°С для воздушных стерилизаторов. Упакованные термометры размещают в контрольные точки. По окончании цикла стерилизации регистрируются показания термометров, которые сопоставляются с регламентированной температурой.

Хронометраж стерилизации проводят с помощью механического секундомера или наручных механических часов.

Давление в паровом стерилизаторе измеряют мановакуум метром. Диапазон измерения 1-5 кгс/см2.

Обнаружение неудовлетворительных результатов показывает на возможные нарушения: режима стерилизации, правильности загрузки или исправности аппарата.

Химический метод

Химический контроль проводят с помощью химических тестов и термических индикаторов. Используются химические вещества, иногда в смеси с органическим красителем, изменяющие свое агрегатное состояние и цвет при определенной температуре.

Упакованные химические тесты нумеруют и размещают в паровые и воздушные стерилизаторы. Обычно индикаторные соединения запаивают в стеклянные трубочки. При равномерном расплавлении и изменении цвета теста результат считается удовлетворительным.

Для контроля работы паровых стерилизаторов применяются вещества, температура плавления которых соответствует температурному режиму работы данного аппарата:

Амидопирин (белый кристаллический порошок или кристаллы без запаха), интервал температуры плавления 104 - 107°C.

Антипирин (белый кристаллический порошок или бесцветные кристаллы без запаха), 108-111°C.

Резорцин (белый или со слабым желтоватым оттенком кристаллический порошок со слабым запахом), 105-110°.

Бензойная кислота (бесцветные игольчатые кристаллы или белый кристаллический порошок), 114-120°C.

Д (+) - Манноза (бесцветные кристаллы в виде ромбических призм), 127-131°C.

Никотинамид (белый мелкокристаллический порошок со слабым запахом), 125-131°C.

Контроль температурного режима работы воздушных стерилизаторов осуществляется тестами с другими химическими веществами:

Левомицетин (белый или с желтовато-зеленоватым оттенком кристаллический порошок), интервал температуры плавления 141 - 146°C.

Винная кислота (бесцветные кристаллы), 168-169°C.

Гидрохинон (бесцветные или светло-серые серебристые кристаллы), 164-170°C.

Тиомочевина (блестящие кристаллы), 165-171°C.

Обнаружение не оплавленного теста указывает на несоблюдение температурных параметров режима стерилизации. Стерилизацию повторяют с закладкой новых химических тестов. При повторном неудовлетворительном результате прекращают использовать стерилизатор. Проводят тщательную проверку его состояния с контролем измерительной аппаратуры.

Бактериологический метод

Метод предназначен для контроля работы стерилизаторов с помощью биотестов. Биотесты представляют собой споры бактериальных культур, помещенных в стеклянные трубки или чашечки из алюминиевой фольги.

Используют тест-культуры ВКМ В-718 и штамм С. Биотесты готовят бактериологические лаборатории в соответствии с официальной методикой. В случаях неудовлетворительного результата (рост культур) проводится анализ параметров стерилизационного цикла.

Дополнительно может применяться контроль на стерильность смывов с простерилизованного инструментария.

Наиболее частые причины негативных результатов контроля стерилизации:

неисправность аппаратуры и контрольно-измерительных приборов; неполное удаление воздуха из рабочей камеры парового стерилизатора; перегрузка и неправильная загрузка стерилизационной камеры; несоблюдение параметров стерилизации; использование нерегламентированного упаковочного материала; нарушение режима вентиляции парового стерилизатора;

использование в химической стерилизации веществ после длительного хранения без контроля на содержание активно действующего начала.

ЗАКЛЮЧЕНИЕ

Уничтожение микроорганизмов химическими и физическими способами подчиняется экспоненциальному закону. Это означает, что неизбежно имеется конечная вероятность того, что микроорганизм может выжить не зависимо от степени проведенной обработки. Для конкретной обработки вероятность выживания определена количествами и типами микроорганизмов и условий их существования до и во время обработки.

Список использованной литературы

- 1. Терапевтическая стоматология/ Авторы: Е.В. Боровский, В.С. Иванов, Ю.М. Максимовский, Л.Н. Максимовская/ Москва "медицина" 2002г.
- 2. http://gooddoctor. ucoz.ru/publ/terapija_stomatologicheskaja/lekcii_konspekty/rezhimy_dezinfekcii_i sterilizacii v stomatologii/25-1-0-8
- 3. http://www.studfiles.ru/preview/1147871/
- 4. http://tellcall.ru/2011-06-07-18-54-11/24-2011-06-21-13-07-40.html