РАСЧЕТ ЛИНЕЙНОГО ПАССИВНОГО ЧЕТЫРЕХПОЛЮСНИКА

Содержание работы

Для четырехполюсника, соответствующего номеру варианта, выполнить следующее:

- 1. Определить сопротивление холостого хода $\frac{Z_{xx}}{}$ и короткого замыкания $\frac{Z_{xz}}{}$.
- 2. По найденным сопротивлениям определить коэффициенты четырехполюсника в форме A (A, B, C, D). Проверить соотношение между ними (AD-BC=1).
- 3. Определить напряжение U_2 , токи I_1 и I_2 , мощности P_1 и P_2 , КПД η четырехполюсника при значениях напряжения U_1 и активном сопротивлении нагрузки R_H , подключенном к выходным зажимам.
- 4.Определить характеристическое сопротивление $\underline{Z}_{\mathbb{C}}$ и коэффициент передачи γ . Исходные данные приведены в табл.1, схемы на рис.1.

Таблица 1 Исхолные данные четырехполюсника

таолица и пекодиве даниве тетврекнолюеника								
U_1 ,B	R_1 , Om	X _{L1} , O _M	R ₂ , Ом	Х _{С2} ,Ом	R _н ,Ом			
127	8	5	16	20	35			

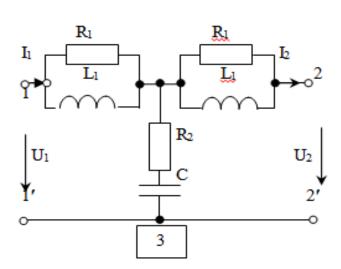
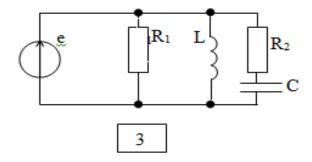


Рис. 1. Схема к задаче 1 **Задача 2**

8


РАСЧЕТ ЛИНЕЙНОЙ ЦЕПИ ПРИ НЕСИНУСОИДАЛЬНЫХ НАПРЯЖЕНИЯХ И ТОКАХ

Содержание работы

Для электрической цепи, соответствующей номеру варианта, выполнить следующее:

- 1. Разложить периодическую несинусоидальную ЭДС $e = f(\omega t)$, заданную в виде графика, в ряд Фурье, ограничившись первыми тремя гармониками. Написать уравнение мгновенного значения ЭДС $e^{(\omega t)}$
 - 2. Определить действующее значение несинусоидальной ЭДС.
- 3. Вычислить токи гармоник на неразветвленном участке цепи и записать закон изменения суммарного тока.
- 4. Построить в масштабе гармоники входного напряжения и их графическую сумму, а также заданную кривую (в одних осях).
 - 5. Построить в масштабе графики гармоник входного тока и их графическую сумму.
- 6. Определить активную, реактивную и полную мощности, а также коэффициент мощности и коэффициент искажения.

Исходные данные приведены в табл.5, схемы на рис. 3.

Форма кривой (Табл.4)	E _m ,	ω,	R_1 ,	R_2 ,	L,	C,
Форма кривой (Таол.4)	В	рад/с	Ом	Ом	мΓн	мкФ
1	100	1000	35	20	5	30

Примечание: $\alpha = \pi/3$, k = 0.5

Таблица 4 Разложение периодической функции в ряд Фурье

Форма кривой ЭДС	Разложение в ряд Фурье
$ \begin{array}{c c} \uparrow f(\omega t) \\ \hline \alpha & \alpha \\ \hline \alpha & \alpha \end{array} $ $ \begin{array}{c} 2\pi & \omega t $	$f(\omega t) = (\frac{4A_m}{\alpha \pi})(\sin \alpha \sin \omega t + \frac{1}{9}\sin 3\alpha \sin 3\omega t + \frac{1}{25}\sin 5\alpha \sin 5\omega t)$

Задача 3

СОСРЕДОТОЧЕННЫМИПАРАМЕТРАМИ ПРИ ПОСТОЯННОЙ ЭДС ИСТОЧНИКА ПИТАНИЯ

В электрической цепи (рис. 3) в результате коммутации возникает переходный процесс. Параметры цепи для каждого варианта приведены в табл. 4, постоянная ЭДС источника $E=110~\mathrm{B}$.

Определить закон изменения во времени тока катушки и напряжение на конденсаторе и построить их графики в одних осях.

Примечание. Студенты направления 13.03.02 решают задачу №3 классическим и операторным методами. Для построения графиков вычисляют 10-12 значений токов и напряжений в промежутке времени от t = 0 до $t = 4\tau$. Результаты вычислений оформить в виде таблицы.

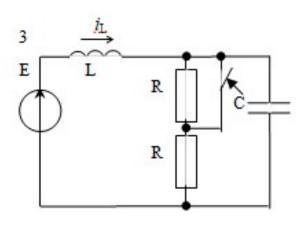


Таблица 4

R, Om	L, Гн	С, мкФ
15	0,1	40