Практической работы № 47 Проектирование процесса закачки воды.

Цель работы: Проектирование процесса закачки. Расчет число нагнетательных скважин.

Теоретическая часть

Поддержание пластового давления (ППД) — эффективное средство разработки нефтяного месторождения. Процесс проектирования закачки воды с целью ППД — сложная технико-экономическая задача, решаемая на этапе составления технологической схемы или проекта разработки месторождения. Проектирование процесса закачки сводится к определению для конкретных условий оптимального давления на устье нагнетательной скважины, давления на забое и необходимого количества воды. Кроме того, рассчитывается число нагнетательных скважин и их приемистость. Оптимальное давление на устье нагнетательной скважины вычисляют по формуле А.П.Крылова:

$$P_{yu} = \sqrt{\frac{C_c \eta}{K_{\Pi PM} 365 t w C_B}} - (p_{cT} - p_{\Pi J} - p_{TP}), (1)$$

где C_c - стоимостьнагнетательной скважины, руб.;

 η - КПД насосного агрегата;

 $K_{\text{прм}}$ - коэффициент приемистости нагнетательной скважины, $M^3/(\text{сут*Mna});$

 ${m t}$ - время работы нагнетательной скважины, год;

 \mathbf{W} - энергетические затраты на нагнетание 1м^3 воды при повышении давления на 1 Мпа, к $\text{Вт*ч/(м}^3 * \text{Мпа})$ (w = 0.27);

 $C_{\text{в}}$ - стоимость 1 кВт*ч электорэнергии, руб/(кВт*ч) ($C_{\text{в}} \approx 0{,}015$);

 p_{cr} - гидростатическое давление воды в скважине, глубиной L_c , Мпа.

$$p_{cT} = 10^{-6} \rho_B g L_c \tag{2}$$

 ${f P}_{{\bf n}{\bf n}}$ – среднее пластовое давление в зоне нагнетания воды, Мпа;

 ${f p}_{{f r}{f p}}$ – потери давления при движении воды от насоса до забоя,Мпа.

Давление на забое нагнетательной скважины:

$$\mathbf{P}_{3a6 H} = \mathbf{p}_{yH} + 10^{-6} \rho_B \mathbf{g} \mathbf{L}_c - \mathbf{P}_{Tp}. \tag{3}$$

Величину $P_{\tau p}$ можно принять равной 3Mпа

Необходимое количество закачиваемой воды $V_{\text{в}}$ (в м³/сут) расчитывается по формуле:

$$\mathbf{V}_{\mathbf{B}} = \mathbf{1,2} \ (\mathbf{V}_{\mathbf{H}\mathbf{H}\mathbf{J}} + \mathbf{V}_{\mathbf{\Gamma}\mathbf{C}\mathbf{B}\mathbf{H}\mathbf{J}} + \mathbf{V}_{\mathbf{B}\mathbf{H}\mathbf{J}}), \tag{4}$$

где $V_{\text{нпл}}$ – объем добываемой из залежи нефти, приведенной к пластовым условиям, м³/сут;

 ${f V}_{{
m rcвпл}}$ — объем свободного газа в пласте при ${f p}_{{
m пл}}$ и ${f T}_{{
m пл}}$, который добывается вместе с нефтью за сутки, м³/сут;

 $V_{\text{вил}}$ – объем добываемой из залежи воды, м³/сут.

Объем нефти в пластовых условиях:

$$V_{\text{HIIJ}} = 10^3 \frac{Q_{\text{HД}} b_{\text{HПЛ}}}{\rho_{\text{HД}}}, \qquad (5)$$

Объем свободного газа:

$$V_{\text{гевил}} = \frac{V_{\text{нпл}} (G_0 - \alpha P_{\text{пл}}) z P_0 T_{\text{пл}}}{P_{\text{пл}} T_{\text{ст}}},$$
(6)

Где Ро принять как 0,1

 $T_{cT} = 293$

Объем воды:

$$\mathbf{V}_{\text{BHJ}} = \mathbf{10}^3 \frac{Q_{\text{B}} b_{\text{BHJ}}}{\rho_{\text{B}}},\tag{7}$$

где $Q_{n\theta}$, Q_{θ} — соответственно количество дегазированной нефти и воды, добываемое из залежи за сутки, т/сут;

 $b_{{\it нnn}},\ b_{{\it enn}}$ — соответственно объемные коэффициенты нефти и воды при пластовых условиях;

G – газовый фактор, м³/м3;

 α – средний коэффициент растворимости газа в нефти, м³/(м³*МПа).

Практическая часть

Рассчитать основные показатели закачки воды, если из залежи извлекается нефти $Q_{n\partial}$, воды Q_s , газовый фактор G_o , среднее пластовое давление меньше давления насыщения $P_{n\pi}$; коэффициент растворимости газа в нефти α , пластовая температура $T_{n\pi}$,объмный коэффициент нефти $b_{n\pi}$, плотность дегазированной нефти $\rho_{n\partial}$, объемный коэффициент пластовой воды $b_{n\pi}$. Стоимость нагнетательной скважины C_c , коэффициент приемистости нагнетательной скважины E_n , время работы нагнетательной скважины E_n , корфициент приемистости нагнетательной скважины E_n , время работы нагнетательной скважины E_n , корфициент приемистости нагнетательной скважины E_n , время работы нагнетательной скважины E_n , корфициент

Глубина скважины L_c , плотность нагнетаемой воды ρ_{6} . Коэффициент сверхсжимаемости газа z.

- 1. По формуле (1) вычисляется оптимальное давление на устье нагнетательной скважины. При этом определяется гидростатическое давление P_{cm} (формула (2) в скважине.
 - 2. Определяется давление на забое нагнетательной скважины $P_{3a\delta n}$.
 - 3. Рассчитывается $V_{\text{нпл}}$, $V_{\text{гсвпл}}$, $V_{\text{впл}}$ по формулам (5),(6),(7).
 - 4. По формуле (4) определяется суточный объем закачки воды V_s .
- 5. Ответ: для заданных условий суточный объем закачки составляет $V_{\mathfrak{s}}$ при давлении на устье нагнетательной скважины $P_{v_{H}}$.

Для условий предыдушей задачи рассчитать число нагнетательных скважин, если коэффициент приемистости их одинаков.

Объем закачки воды в одну нагнетательную скважину:

$$q_{en} = K_{npm}(P_{3a6H} - P_{IJI}) \tag{8}$$

тогда число нагнетательных скважин:

$$n = \frac{V_{\rm B}}{q_{\rm BH}}(9)$$

- 1. По формуле 3 определяется давление на забое нагнетательной скважины $\mathbf{P}_{\mathsf{3a6\ H}}.$
 - 2. По формуле 8 определяется объем закачки воды в одну нагнетательную скважину $q_{\it вн}$.
- 3. По формуле 9 определяется число нагнетательных скважин для данных условий.

Параметры	Варианты условия задачи				
	1	2	3	4	5
Q ид, т/сут	11000	12000	12500	13000	11600
Q _s , т/сут	5600	5400	5500	5650	5450
Go , M^3/M^3	60	58	61	59	62
P_{nv} МПа	8,5	8,4	8,5	8,6	8,7
α, м ³ /м ³	5	4,8	5,1	5,2	5
<i>Тпл,</i> К	303	304	302	303	304
$b_{\scriptscriptstyle HIIJI}$	1,15	1,16	1,17	1,18	1,15
<i>р_{ндь}</i> кг/м³	852	854	855	857	853
$b_{\scriptscriptstyle BRA}$	1,01	1,02	1,03	1,04	1,01
С ₀ руб.	120000	120000	120000	120000	120000
К прм, м ³ /(сут*МПа)	50	50	50	50	50
t ,лет	12	11	13	13	12
η	0,6	0,6	0,6	0,6	0,6
<i>L</i> _c , M	1200	1300	1350	1400	1250
ρ _B κΓ/M ³	1050	1060	1050	1060	1050
Z	0,87	0,88	0,86	0,87	0,86

Контрольные вопросы

- 1. Цель, задачи и суть метода ППД
- 2. Виды ППД
- 3. Законтурное заводнение сущность и размещение скважин
- 4. Внутриконтурное заводнение сущность и размещение скважин.
- 5. Приконтурное заводнение сущность и размещение скважин.
- 6. Что такое приемистость?