МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

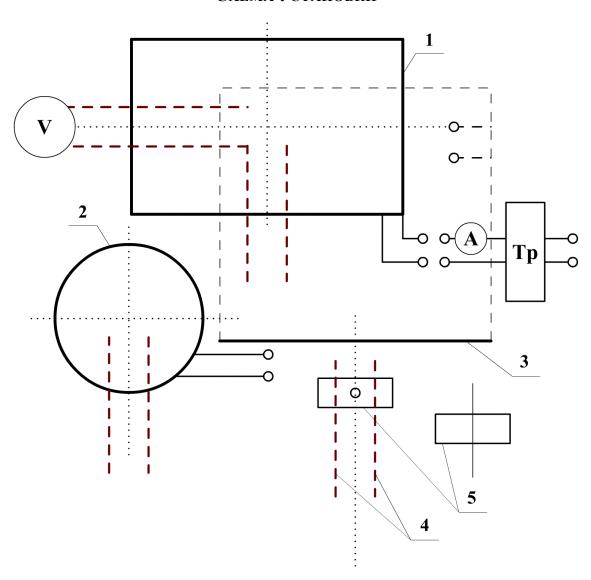
(наименование отделения / школы)	
(направление / специальность)	

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ МАГНИТНОГО ПОЛЯ, ОБРАЗОВАННОГО ПРЯМЫМ И КРУГОВЫМ ТОКАМИ

Э-2	20
	Вариант : Э-20 (номер вашего варианта)
Дисциплина :	(наименование дисциплины)

Студент:	3		
	(номер группы)	(фамилия, инициалы)	(дата сдачи)
Руководитель:			
	(должность, уч. степень, звание)	(фамилия, инициалы)	


Томск — (город, год)

КРАТКОЕ ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ РАБОТЫ

Индукция магнитного поля – силовая характеристика магнитного поля

Метод измерения индукции магнитного поля заключается в ... данной работе проводиться на основе явления электромагнитной индукции

Схема установки

Обозначения:

- 1 Прямоугольный контур
- 2 Круговой контур
- 3 Прямолинейный контур
- 4 гнезда
- 5 Штепсельная розетка
- А Амперметр
- V- милливольтметр
- Тр Трансформатор

РАСЧЁТНЫЕ ФОРМУЛЫ

1. При измерениях:

$$B = \frac{\varepsilon\sqrt{2}}{NS\omega}$$

где

ε – Действующее значение ЭДС

N- Число витков в катушке

S — Площадь сечения катушки

ω – Циклическая частота переменного тока

2. Для вычисления значений индукции магнитного поля в прямоугольном контуре и от отрезка прямого тока применяется формула:

$$B = \int_{\alpha_1}^{\alpha_2} \frac{\mu_0 I \sin \alpha d\alpha}{4\pi a} = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$$

где

μ₀ – Магнитная постоянная

I- Ток в проводнике

φ₁ – Предел измерения угла, проводника конечной длинны

φ2 – Предел измерения угла, проводника конечной длинны

Расстояние от проводника до точки определения индукции магнитного поля

3. Для вычисления значений индукции магнитного поля в центре кругового контура применяется формула:

$$B = \int_{l}^{2\pi R} \frac{\mu_0 I dl}{4\pi r^2} = \frac{\mu_0 I}{4\pi R^2} \int_{0}^{2\pi R} dl = \frac{\mu_0 I}{4\pi R^2} 2\pi R = \frac{\mu_0 I}{2R}.$$

где

 μ_0 — Магнитная постоянная ($^{4\pi\cdot 10^{-7}}$ [Гн/м; Н/А 2])

I — Ток в круговом контуре

R – Радиус кругового контура

Результаты измерений

1. Для прямоугольного контура

Таблица 1

I (A) 3.5*25=87.5

r_1 (cm)	1	2	3	4	5	6	7	8	9	10	11
ε (B)	10.7	20.7	53.3	108.1	67.3	56.8	51.7	49.1	47.8	47.1	46.9
B (Тл)	0.001721	0.00333	0.008573	0.017	0.011	0.009136	0.008316	0.007898	0.007689	0.007576	0.007544

Таблица 2

$$r_2$$
 (CM)
1
2
3
5
6
7

 ϵ (B)
17
29.08
67.1
112.7
65.2

 B (Тл)
0.002734
0.004678
0.011
0.018
0.01
0.008509

2. Для кругового контура

Таблица 3

$$I(A) 3,6*22=79,2$$

$$r$$
 (cm)
 1
 2
 3
 4
 6
 7
 8
 9
 10

 ε (B)
 5.7
 9.8
 19.8
 50.5
 104.1
 66.5
 54.3
 49.3
 48.8

 B (Тл)
 0.000916
 0.001576
 0.003185
 0.008123
 0.017
 0.011
 0.008734
 0.00793
 0.00785

3. Для отрезка прямого тока

I(A) 4,0*14=56

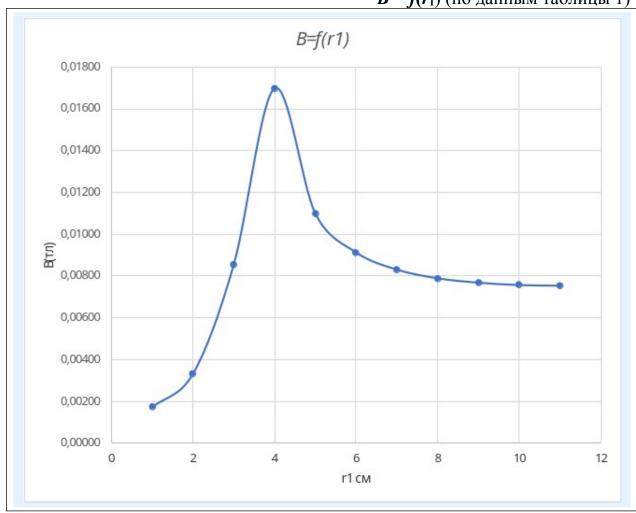
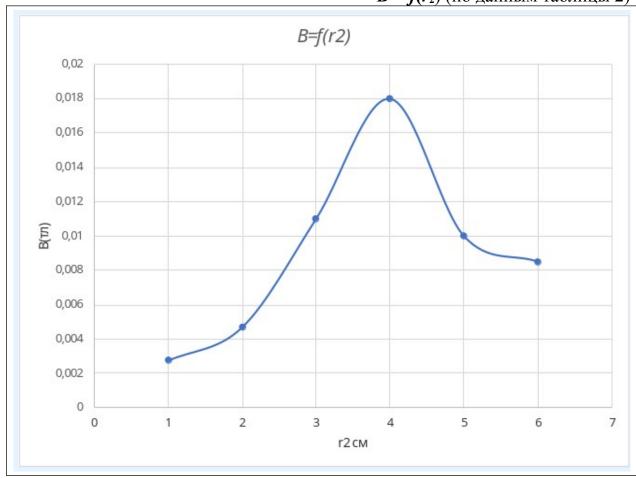
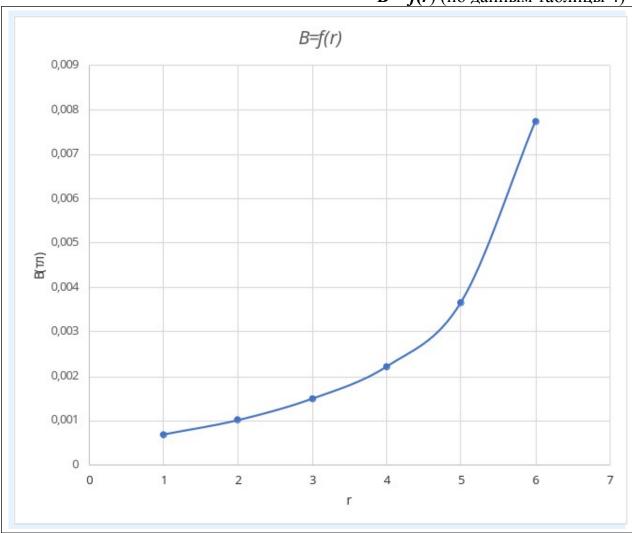

r (см)123456 ϵ (В)4.36.39.313.822.848.1B (Тл)0.0006910.0010130.0014960.002220.0036670.007737

Таблица 4


Обработка результатов

1. Графические зависимости

 $B = f(r_1)$ (по данным таблицы 1)



2. Сравните экспериментальные данные с расчётными:

Прямоугольный контур

Экспериментальное значение B в центре контура

Расчётное значение B в центре контура

0.009136

0.00978

Круговой контур

Экспериментальное значение B
в центре контура

Расчётное значение B в центре контура

0.008123

0.01005

Отрезок прямого тока

Расстояние от катушки до проводника (см)	Экспериментальное B	Расчётное B
1	0.000691	0.000712
2	0.001013	0.001244
3	0.001496	0.001511
4	0.00222	0.00247
5	0.003667	0.00387
6	0.007737	0.0801

3. Оцените погрешность измерений в зависимости от класса точности приборов

 $\Delta I = 0.025 \text{ Amnep}$

 $\Delta \varepsilon = 0,0025$ Вольт

Выводы

В ходе работы были получены данные о напряженности магнитного поля с помощью измерительной катушки, проведена аналитическая и графическая обработка полученных данных.

По графическим зависимостям ясно что при увеличении В(тл) растет в зависимости к приближению к центру контура, затем падает вниз при

уменьшении напряжения на измерительной катушке, для графиков 1-2-3, для графика 4 для плоского контура при увеличении отдаления измерительной катушки от начала к концу напряжение возрастает на измерительной катушке исходя из этого в зависимости о расстояния В(тл) увеличивается плавно. Экспериментальные значения отличны от расчетных в следствии погрешности измерения.