САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ФИЗИКИ

ОТЧЕТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ № 8

«ИССЛЕДОВАНИЕ ЭФФЕКТА ХОЛЛА В СОБСТВЕННОМ ПОЛУПРОВОДНИКЕ »

ВЫПОЛНИЛ: МАЦЯС С.И. ГРУППА: 0113 ФАКУЛЬТЕТ: ФРТ

Санкт-Петербург 2001 <u>Цель работы:</u> изучение действия магнитного поля на движущиеся заряды при исследовании эффекта Холла; определение постоянной Холла, концентрации, подвижностей и средних скоростей упорядоченного движения носителей заряда в собственном полупроводнике.

<u>Приборы и принадлежности:</u> измерительная установка с электромагнитом и датчиком Холла.

 $\it Исследуемые$ закономерности. Эффект Холла заключается в том, что в металлической или полупроводниковой пластинке с током I, помещенной в магнитное поле, перпендикулярное вектору плотности тока $\it j$, между гранями пластины, параллельными направлениям тока и магнитного поля, возникает разность потенциалов $\it U_x$

$$U_x = \varphi_1 - \varphi_2 = R_x B j d = \frac{R_x B I}{h}$$
 (1)

где R_x — коэффициент (постоянная) Холла; В — индукция магнитного поля; d и h — ширина и толщина пластины соответственно.

Эффект Холла объясняется отклонением под действием силы Лоренца F_{π} носителей заряда Q, движущихся в магнитном поле со средней скоростью упорядоченного движения < v >

$$F_{\tau} = Q < v > \times B$$

В результате на одной из граней оказывается избыток зарядов, а на другой (противоположной) — их недостаток, и возникает поперечное электрическое поле E_{\perp} . Квазистационарнос распределение зарядов в поперечном направления будет достигнуто, когда действие на заряды электрической силы $F_e=QE_{\perp}$ уравновесит действие силы Лоренца, при этом

$$E_{\perp} = \langle v \rangle B$$

В электронных (или дырочных) полупроводниках или металлах $j=en_0 < v >$, где ℓ — элементарный заряд; n_0 — концентрация основных носителей заряда ($n_0 = p$ для полупроводников р-типа и $n_0 = n$ для полупроводников n-типа; n и p — концентрации электронов и дырок соответственно), тогда

$$U_x = E_{\perp}d = \langle v \rangle Bd = \frac{j}{en_0}Bd$$

В результате, с учетом выражения (1), получаем

$$R_x = \frac{1}{en_0}$$

В собственных полупроводниках концентрации электронов и дырок равны: $n=p=n_i$, здесь n_i ,— собственная концентрация носителей заряда; ток складывается из электронной и дырочной составляющих:

где $\langle v_- \rangle, \langle v_+ \rangle, \mu_-, \mu_+$ — средние скорости упорядоченного движения и подвижности электронов и дырок соответственно; γ - удельная электропроводность полупроводника, равная $\gamma = en_i(\mu_- + \mu_+) = en_i\mu_+(1+b),$ (2)

здесь $b = \frac{\mu_-}{\mu_+}$ — отношение подвижностей электронов и дырок.

Тогда постоянная Холла для собственного полупроводника

$$R_{x} = \frac{1}{en_{i}} \cdot \frac{\mu_{+} - \mu_{-}}{\mu_{+} + \mu_{-}} = \frac{1}{en_{i}} \cdot \frac{1 - b}{1 + b}$$
(3)

Таким образом, определив постоянную Холла, можно найти концентрацию носителей заряда, а по знаку постоянной Холла — судить о принадлежности полупроводника к n-типу или к p-типу. Обычно в металлах и полупроводниках n-типа $R_x < 0$, а в полупроводниках p-типа $R_x > 0$. В собственном полупроводнике знак холловской разности потенциалов определяется знаком заряда носителей, имеющих большую подвижность. Обычно $\mu_- > \mu_+$, и в собственном полупроводнике $R_x < 0$.

Измерив, кроме постоянной Холла R_x , удельную электропроводность \mathcal{Y} , можно найти (при известном значении b) подвижности μ_{-},μ_{+} - носителей заряда. Выражения для μ_{-},μ_{+} получаются из соотношении (2) и (3).

Методика эксперимента.

В данной работе исследуется эффект Холла в собственном полупроводнике. Измерения проводят в постоянном магнитном поле при постоянном токе в образце. Схема измерительной установки представлена на рис. 3.2, a, а расположение электродов на пластинке полупроводника (в датчике Холла) дано на рис. 3.2, b. Заданное значение силы тока l и в датчике Холла устанавливают потенциометром R2. Электроды 2 и 3, расположенные на боковой поверхности датчика на расстоянии l друг от друга, служат для измерения напряжения $U_y = \varphi_3 - \varphi_2$, по величине которого определяют удельную электропроводность полупроводника

$$\gamma = \frac{1}{|U_{\gamma}|} \cdot \frac{1}{dh}.$$

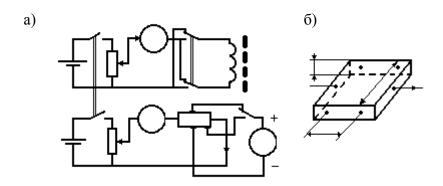


Рис. 3.2.

Холловскую разность потенциалов U_x измеряют между электродами 1 и 2 датчика (положение « U_x » переключателя SA3). Поскольку измеряемое напряжение U_x может содержать добавочное паразитное напряжение, появляющееся при несимметричном расположении электродов 1 и 2, определение постоянной Холла в данной работе производят по наклону зависимости $U_x(B)$, снимаемой при противоположных правлениях вектора индукции В магнитного поля. Изменение направления вектора В осуществляют изменением направления тока I_{2M} в электромагните YA1 переключателем SA2. Силу тока I_{2M} регулируют потенциометром R1. Индукцию магнитного поля в зазоре электромагнита рассчитывают по формуле $B = k \cdot I_{2M}$, где k — коэффициент пропорциональности, указанный на панели установки.

Указания по выполнению наблюдений и обработке результатов

- 1. Потенциометры R1 и R2 вывести в крайнее левое положение. Включить установку.
- 2. Установить силу тока I_1 в датчике Холла (значения $I_1, I_2, |I_{\scriptscriptstyle 2M}|_{\scriptscriptstyle \max}$ указаны на панели установки). Снять зависимость $U_x (I_{\scriptscriptstyle 2M})$ (8…10 точек), меняя ток $I_{\scriptscriptstyle 2M}$ от нуля до значения $|I_{\scriptscriptstyle 2M}|_{\scriptscriptstyle \max}$. В процессе измерений значение I_1 поддерживать постоянным.
 - 3. Повторить наблюдения по п. 2 для противоположного направления В.
- 4. Результаты измерений по пп. 2 и 3 занести в таблицу произвольной формы с учетом знаков U_x и $I_{\scriptscriptstyle 3M}$. Значения $I_{\scriptscriptstyle 2M}$ в положении « $I_{\scriptscriptstyle 3M}$ *» переключателя SA2 считать положительными, а в положении « $I_{\scriptscriptstyle 3M}$ *» отрицательными.
 - 5. Измерить напряжение U_y при силе тока I_2 в датчике Холла и $I_{3M} = 0$.
- 6. Занести в протокол наблюдений значения I_1, I_2, U_y и другие необходимые сведения, в том числе сведения о приборных погрешностях, указанные на панели установки и шкалах измерительных приборов.
 - 7. Вычислить и записать в таблицу значения В.
- 8. Провести обработку по метолу наименьших квадратов зависимости U_x (B) и определить параметры $\overline{a} \pm \Delta a$ и $\overline{c} \pm \Delta c$ аппроксимирующей зависимости $U_x = \overline{a}B + \overline{c}$, общей для положительных и отрицательных значений B. По величине углового коэффициента $\overline{a} \pm \Delta a$ рассчитать среднее значение и доверительную погрешность постоянной Холла R_x (см. выражение (1)).
- 9. Рассчитать средние значения и доверительные погрешности: удельной электропроводности полупроводника \mathcal{Y} , концентрации носителей заряда в собственном полупроводнике n_i , подвижностей дырок μ_+ и электронов μ_- .
- 10. Вычислить средние скорости упорядоченного движения дырок $< v_+ >$ и электронов $< v_- >$ при токе в датчике Холла I_2 и сравнить полученные значения со средней скоростью теплового движения электронов в металле $< v_T > = \sqrt{\frac{8kT}{\pi m_e}}$.

Отчет также должен содержать график аппроксимирующей зависимости $U_x = \overline{a}B + \overline{c}$, с нанесенными экспериментальными значениями $U_x(B)$.

Протокол наблюдений

i	1	2	3	4	5	6	7	8
$U_{\scriptscriptstyle xi}$	0	1	1,2	1,8	2,4	3,6	4	4,4
$I_{_{\mathfrak{I}Mi}}$	0	0,1	0,2	0,3	0,4	0,6	0,7	0,8

i	1	2	3	4	5	6	7	8
U_{xi}	0	0,4	1	1,6	2	3,2	3,6	4
$I_{_{\mathfrak{I}Mi}}$	0	0,1	0,2	0,3	0,4	0,6	0,7	0,8

$$\begin{split} I_1 &= \\ I_2 &= \\ \left|I_{\scriptscriptstyle \mathcal{M}}\right|_{\max} &= \end{split}$$

$$U_{y} = B = R_{x} = R_{x}$$

$$\gamma = \mu_{+} =$$

$$n_i = < v_+ > =$$

$$< v_{\scriptscriptstyle T}>=$$

Выполнил: Мацяс, 0113

19.02.01

Проверил: Осипов

Обработка результатов

1.
$$B = 1,28T\pi$$

2.
$$R_{xi} = \frac{U_x}{BI_{xi}} \cdot h$$

$$R_{x2} = \frac{1 \cdot 10^{-3}}{1,28 \cdot 0,1} \cdot 45 \cdot 10^{-6} = 3,5 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x3} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x4} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x5} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x5} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x6} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x7} = 2,0 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x8} = 1,9 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x9} = 1,4 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x10} = 1,7 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x11} = 2,1 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x12} = 1,7 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x13} = 1,8 \cdot 10^{-7} \frac{M^{3}}{K\pi}; R_{x14} = 1,8 \cdot 10^{-7} \frac{M^{3}}{K\pi}.$$

$$\overline{R}_{x} = \frac{\sum_{i} R_{xi}}{N(=14)} = 1.8 \cdot 10^{-7} \frac{M^{3}}{K\pi}$$

$$S_{\Delta \overline{R}_{x}} = \sqrt{\frac{\sum_{i} (R_{xi} - \overline{R}_{x})^{2}}{N(N-1)}} = 0.05 \cdot 10^{-7} \frac{M^{3}}{K\pi}$$

$$\Delta R_{px} = S_{\Delta \overline{R}_{x}} \cdot t_{p,N} = 0.17$$

Окончательно результат запишется в виде:

$$R_x = (1,80 \pm 0,17) \cdot 10^{-7} \frac{M^3}{K\pi}$$

3

$$\bar{y} = \frac{II_1}{dh|U_y|} = 1.9 \cdot 10^5 \frac{OM}{M}$$

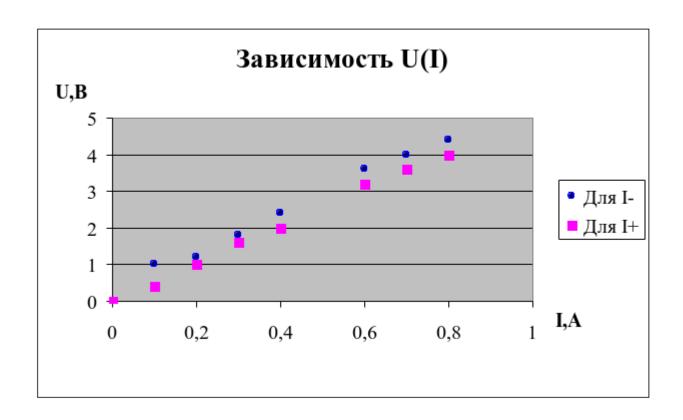
Расчет погрешности косвенным методом:

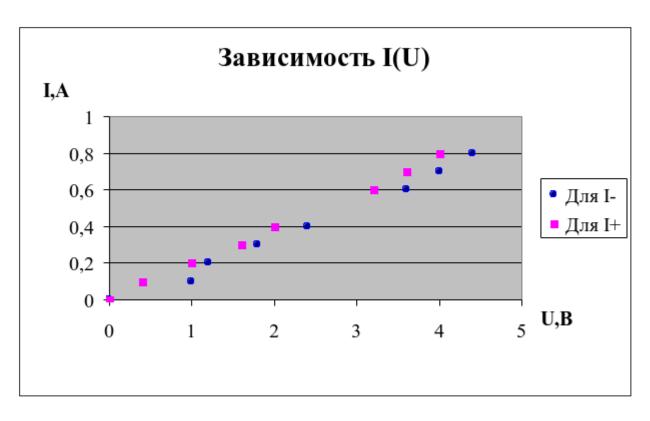
$$\bar{y}_{p} = \sqrt{\left(\frac{-\Delta l}{\Delta d \Delta h \cdot (\Delta U_{y})^{2}}\right)^{2} + \left(\frac{1}{\Delta d \Delta h \cdot (\Delta U_{y})}\right)^{2} + \left(\frac{-\Delta l}{\Delta d^{2} \Delta h \cdot (\Delta U_{y})}\right)^{2} + \left(\frac{-\Delta l}{\Delta d \Delta h^{2} \cdot (\Delta U_{y})}\right)^{2}} = 0.23 \cdot 10^{7} \frac{Om}{M}$$

Результат вычислений запишется в виде:

$$\gamma = (1.92 \pm 0.23) \cdot 10^5 \frac{O_M}{M}$$

4.
$$n_0 = \frac{1}{R_v l} = 3.5 \cdot 10^{25}$$


5.
$$\mu_{+} = \frac{y}{en_{0}(1+b)} = 3.4 \cdot 10^{3} \frac{M^{2}}{B \cdot c}$$


$$\mu_{-} = b\mu_{+} = 3.4 \cdot 10^{5} \frac{M^{2}}{B \cdot c}$$

6.
$$\langle v_{-} \rangle = \langle v_{+} \rangle = \frac{I \cdot l}{Nq} = \frac{I}{nhdq} = \frac{2*10^{-3}}{3.5 \cdot 10^{25} * 45 \cdot 10^{-6} * 1.2 \cdot 10^{-3} * 1.6 \cdot 10^{-19}} = 0.07 \frac{cM}{c}$$

$$v_T = \sqrt{\frac{8kT}{\pi m_e}} = 10^5 \frac{M}{c}$$

Графики функций

Вывод: в ходе этой лабораторной работы мы изучили действе магнитного поля на движущиеся заряды при исследовании эффекта Холла, определение постоянную Холла с учетом погрешностей

$$R_x = (1,80 \pm 0,17) \cdot 10^{-7} \frac{M^3}{K\pi}$$
, концентрации $n_0 = \frac{1}{R_x l} = 3,5 \cdot 10^{25}$, подвижностей $\mu_+ = \frac{\gamma}{e n_0 (1+b)} = 3,4 \cdot 10^3 \frac{M^2}{B \cdot c}$, $\mu_- = b \mu_+ = 3,4 \cdot 10^5 \frac{M^2}{B \cdot c}$ удельную электропроводность

 $y = (1,92 \pm 0,23) \cdot 10^5 \frac{O_M}{_M} .$ Рассчитали среднюю скорость упорядоченного движения электронов и сравнили ее с тепловой скорость электронов $< v_- > = < v_+ > = \frac{I \cdot l}{Nq} = \frac{I}{nhdq} = \frac{2*10^{-3}}{3,5 \cdot 10^{25}*45 \cdot 10^{-6}*1,2 \cdot 10^{-3}*1,6 \cdot 10^{-19}} = 0,07 \frac{c_M}{c}, v_T = \sqrt{\frac{8kT}{\pi m_e}} = 10^5 \frac{M}{c},$ т.е. $v_T > > < v > .$