ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Кафедра общей и технической физики

Отчет по лабораторной работе №8

По дисципл	іине:	Фи	зика			
	(наименование	учебной дисці	иплины согласно уче	бному плану)		
Тема: Термодинамика. Политропный процесс						
Выполнил:	ст. гр.	(группа)	(подпись)	(Ф.И.О.)	Π	
ОЦЕНКА:						
Дата:						
ПРОВЕРИЛ	: (должнос	ть)	(подпись)	(Ф.И.О.)		

Санкт-Петербург 2023 год <u>**Цель работы:**</u> изучить законы идеального газа, основные положения классической теории теплоёмкости и определить показатель адиабаты методом Клемона-Дезорма.

Явление, изучаемое в работе: адиабатическое расширение газа

Краткие теоретические сведения

Термодинамическая система – совокупность макроскопических тел, выбранных к рассмотрению, которые могут обмениваться между собой и окружающей средой (т. е. с телами, не принадлежащими системе) энергией и веществом.

Идеальный газ — это газ, в котором взаимодействие между молекулами пренебрежимо мало, а размеры молекул много меньше размеров сосуда.

Общий вид уравнения состояния термодинамической системы

$$F(P,V,T) = 0$$

Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)

$$PV = vRT$$

где R – универсальная газовая постоянная, R = 8,31 Дж /(моль · K); ν - количества вещества, $[\nu]$ =моль ; P – давление [P]= Π a; V – объём, [V]=M3

Таблица 1

Процесс	Изобарный	Изохорный	Изотермический
Закон	Гей-Люссака	Шарла	Бойля-Мариота
Признак	p=const	V = const	T=const
Запись	V/T=const	p/V=const	pV=const

Теплоемкостью системы тел (тела) называется физическая величина, характеризующая количество теплоты, которое нужно затратить для изменения температуры системы тел (тела) на один Кельвин.

Политронный процесс - термодинамический процесс, при котором теплоемкость тела остаётся постоянной.

Адиабатический процесс — это политропный процесс, при котором отсутствует теплообмен между системой и окружающей средой.

Адиабата - график зависимости между параметрами состояния идеального газа при ΔQ =0.

Законы и соотношения, на основании которых выведена расчётная формула:

Уравнение адиабатического процесса (Пуассона):

$$PV^{\gamma} = const$$
,

где P – давление [P]= $\Pi a; V$ – объём, [V]= $M^3; \gamma$ – коэффициент Пуассона.

Схема установки

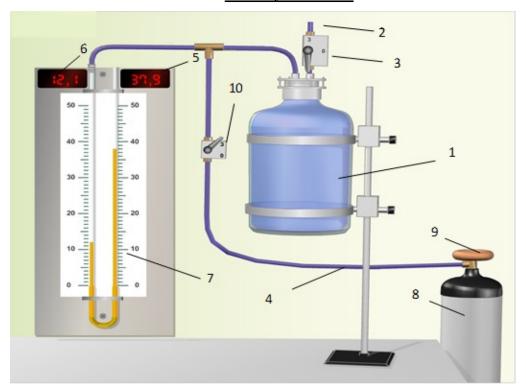


Рис. 2 Внешний вид экспериментальной установки.

1 — стеклянный сосуд, 2 и 4 — магистрали, 3 — выпускной кран, 5 и 6 — цифровое табло, 7 — жидкостной манометр, 8 — баллон, 9 — редуктор, 10 — выпускной кран

Основные расчетные формулы

$$\gamma = \frac{h\,1}{h_1 - h_2}$$
 - основная расчётная формула, где

γ- показатель адиабаты

 h_1 - избыточное давление, созданное накачиванием, $[h_1] = {}_{\rm MM}$

 h_{2} - давление, установившееся после выхода воздуха, $[h_{2}] = {}_{\mathrm{MM}}$

Погрешность прямых измерений

Таблица 2

Ī	№	Название прибора	Предел	Число	Цена	Класс	Абсолютная
			измерений	делений	делений	точности	приборная
							погрешность
	1	Манометр	50 мм	50	1 мм		1 мм

$$\Delta h_1 = \Delta h_2 = 1 \text{ MM}$$

Формулы для расчета погрешностей косвенных измерений

$$\varepsilon_{\gamma} = \sqrt{\left(\frac{1}{h_{1n}} * \Delta h_1\right)^2 + \left(\frac{1}{h_{2n}} \Delta h_2\right)^2}$$

$$\Delta \gamma = \varepsilon_{\gamma} * \overline{\gamma}$$

Результаты измерений и вычислений:

Таблица 3

Физ. величина	h_1	h ₂	h ₁ -h ₂	γ
Единица измерения	СМ	СМ	СМ	
1	9,2	2,8	6,4	1,4375
2	10,8	3,2	7,6	1,421
3	10,2	3,2	7	1,457
4	9,6	2,9	6,7	1,433
5	6,4	2	4,4	1,45
6	11,2	3,2	8	1,4
7	6,6	2	4,6	1,435
8	17,2	4,8	12,4	1,387
9	4,2	1,2	3	1,4
10	5,8	1,8	4	1,45

Примеры вычислений

Вычисление физических величин

$$\gamma 1 = \frac{h_{1,1}}{h_{1,1} - h_{2,1}} = \frac{92 \text{ MM}}{64 \text{ MM}} = 1,4375$$

$$\overline{\gamma} = \frac{1,4375 + 1,421 + \dots + 1,45}{10} = 1,427$$

Вычисление погрешности косвенных измерений:

$$\varepsilon_{\gamma} = \sqrt{\left(\frac{1}{h_{1}} \Delta h_{1}\right)^{2} + \left(\frac{1}{h_{2}} \Delta h_{2}\right)^{2}} = \sqrt{\left(\frac{1}{92}\right)^{2} + \left(\frac{1}{64}\right)^{2}} = \Dot{0.019}$$
или 1,9%
$$\Delta \gamma = \varepsilon_{\gamma} * \overline{\gamma} = 0.019 * 1.427 = 0.027$$

Теоретическое значение коэфф. Пуассона: $\gamma = 1,40$

Окончательный результат: $\gamma = 1.43 \pm 0.03$

Анализ полученного результата

В ходе выполнения лабораторной работы мной было получено значение коэффициента Пуассона, равное $\gamma = 1,43 \pm 0,03$. При сравнении практически полученного и теоретического значений коэффициента можно увидеть небольшое расхождение. Следовательно, можно утверждать, что измерения в рамках данного эксперимента проведены с относительной точностью.