Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тамбовский государственный технический университет» Кафедра: "Радиотехника"

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 ИЗМЕРЕНИЕ ЧАСТОТЫ, ПЕРИОДА И ФАЗЫ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ.

Преподаватель	Пудовкин А.П.
Студент	Липатников М.С
-	

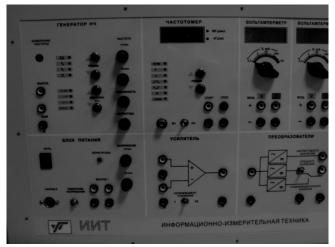
Группа БРТ-211

Лабораторная работа №4 «ИЗМЕРЕНИЕ ЧАСТОТЫ, ПЕРИОДА И ФАЗЫ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ.»

Цель работы - ознакомление с методами и средствами измерений частоты, фазового сдвига, временных интервалов и с методикой оценки погрешности результатов измерений.

Задание

- 1. Измерить частоту периодического сигнала с помощью цифрового частотометра при различных положениях переключателя «время измерения». Оценить погрешность результатов измерения.
- 2. Измерить период того же сигнала с помощью цифрового частотометра при различных положениях переключателя» метки времени». Оценить погрешность результатов измерения.
- 3. Измерить частоту и период того же сигнала с помощью электронного осциллографа. Оценить погрешность результатов измерения.
- 4. Измерить фазовый сдвиг между напряжениями на входе и выходе фазосдвигающего устройства с помощью электронно-лучевого осциллографа. Оценить погрешность результатов измерения.
 - 5. Измерить фазо-частотную характеристику полосового фильтра.


					ТГТУ 11.03	3.01.	010)	
Изм.	Лист	№ докум	Подпись	Дата					
Разраб	5.	Хрипченко А.Е.			«ИЗМЕРЕНИЕ ЧАСТОТЫ ПЕРИОДА И	Лит	Γ.	Лист	Листов
Прове	p.	Пудовкин А.П.			ФАЗЫ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ»			2	
Рецен	3.								
Н. Ко	нтр.					Ка	фед	цра РТ. Г	р.БРТ-201
Утвер	Д.								

ПОРЯДОК ВЫПОЛНЕНИЯРАБОТЫ

Перед началом выполнения работы ознакомится со стендами, представленными на рис. 4.3 и 4.4.

- 4.1. Измерить частоту периодического сигнала с помощью цифрового частотометра при различных положениях переключателя «время измерения». Оценить погрешность результатов измерения.
- 4.1.1. Установить на выходе генератора сигнал с параметрами: частота $f_{\rm r}$ порядка 1000 кГц, среднеквадратическое значение напряжения порядка 0,5

Подготовить частотомер к режиму измерения частоты.

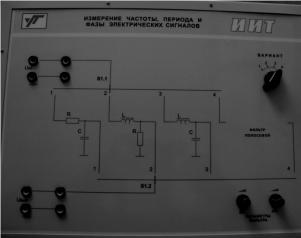


Рис. 4.4

- 4.1. Измерить частоту периодического сигнала с помощью цифрового частотометра при различных положениях переключателя «время измерения». Оценить погрешность результатов измерения.
- 4.1.1. Установить на выходе генератора сигнал с параметрами: частота $f_{\rm r}$ порядка 1000 кГц, среднеквадратическое значение напряжения порядка 0,5

Подготовить частотомер к режиму измерения частоты.

4.1.2. Измерить частоту сигнала на выходе генератора при различных положениях переключателя "Время счета", указанных в

таблице по форме 1.Записать показания $f_{nо\kappa}$ частотомера.

4.1.3. Рассчитать число $N_{\rm f}$ по формуле (4.2).

$$N_f = f_{no\kappa} \cdot \tau_{cq}$$

4.1.4. Рассчитать δ_f по формуле (4.3).

$$\delta_f \pm 100/(t_H f_H)$$
,

						Ли
					ТГТУ 11.03.01.010	
Изм.	Лист	№ докум.	Подпись	Дата		

4.1.5. Рассчитать ε_f по формуле (4.4).

$$\varepsilon_f = \pm \delta_f \cdot f_{no\kappa}$$

4.1.6. Вычислить частоту f по формуле (4.9).

$$f_{no\kappa} - \varepsilon_f \le f \le f_{no\kappa} + \varepsilon_{f}$$

4.1.7. Повторить действия по п.п. 4.1.1 ... 4.1.6, последовательно устанавливая на выходе генератора частоты 100 и 0,02 к Γ ц.

1)

1000 кГц, среднеквадратическое значение напряжения 0,5В

Time/Div	0.1	1	10
$f_{\scriptscriptstyle \rm H3M}, { m K}\Gamma$ Ц	999,5	999,6	999,7
Δ, кГц	0,5	0,4	0,3
∂ ,%	0,05	0,04	0,03

2)

100 кГц, среднеквадратическое значение напряжения 0,5В

Time/Div	0.1	1	10
f _{изм} , кГц	100,32	100,33	100,32
Δ, кГц	0,32	0,33	0,32
∂ ,%	0,3	0,32	0,31

3)

0,02 кГц, среднеквадратическое значение напряжения 0,5В

Time/Div	0,1	1	10
f _{изм} , Гц	20,05	20,03	20,02
Δ, кГц	0,05	0,03	0,02
∂ ,%	0,2	0,1	0,09

f, кГц	$N_{ m f}$ При	$N_{ m f}$ При	$N_{ m f}$ При	δ_f При	δ_f При	δ_f При
	τ=0,1	τ=1	τ=10	τ=0,1	τ=1	τ=10
1000	99,95	999,6	9997	±0,01	±0,0001	±0,00001
100	10,32	100,32	1003,2	±0,1	±0,01	± 0,001
0,02	0,002	0,02	0,2	±50	± 5	±0,5

Изм.	Лист	№ докум.	Подпись	Дата

ТГТУ 11.03.01.010

Лист

f, кГц	ε _f Гц При τ=0,1	ε_f Гц При τ =1	ε_f Гц При τ =10
1000	9,995	0,099	0,009
100	10,032	1,003	0,1
0,02	1	0,1	0,01

f ,кГц При τ=0,1	f,кГц При τ=1	f,кГц При τ=10
999,491 \(\) 999,5 \(\) 999,509	999,599 ≤ 999,6≤999,7	999,699 ≤ 999,7≤999,7
100,31≤100,32≤100,33	100,319≤100,32≤100,321	100,319 \le 100,32 \le 100,320
0,019≤0,02≤0,021	0,0199≤0,02≤0,0201	0,01999≤0,02≤0,02001

$$f_{no\kappa} - \varepsilon_f \le f \le f_{no\kappa} + \varepsilon_f$$

- 4.2. Измерить период того же сигнала с помощью цифрового частотометра при различных положениях переключателя «метки времени». Оценить погрешность результатов измерения.
- 4.2.1. Установить на выходе генератора сигнал с параметрами: частота f_r порядка 0.02 кГц, среднеквадратическое значение напряжения порядка 0.5 В. Подготовить частотомер к режиму измерения периода. Подать сигнал с выхода генератора на соответствующий вход частотомера.
- 4.2.2. Установить переключать "Множитель периода n " в положение 1, "Метки времени" $T_{mакm}$ в положение 0,01 мкс. Снять показания $T_{nок}$ частотомера.
 - 4.2.3. Рассчитать число N_T по формуле (4.6).

$$N_T = T_{no\kappa} / T_M$$

4.2.4. Рассчитать $\delta_{\scriptscriptstyle T}$ по формуле (4.7).

$$\delta_T = \pm 100/(T_X f_0),$$

4.2.5. Рассчитать $\pm \, \varepsilon_{\scriptscriptstyle T} \,$ по формуле (4.8).

$$\varepsilon_T = \pm \delta_T \cdot T_{no\kappa}$$

4.2.6. Вычислить период T по формуле (4.10).

$$T_{no\kappa} - \varepsilon_T \leq T \leq T_{no\kappa} + \varepsilon_T$$

4.2.7. Повторить действия по п.п. 4.2.2 ... 4.2.6 для частоты f_r генератора порядка 100 к Γ ц.

						Ли
					ТГТУ 11.03.01.010	
Изм.	Лист	№ докум.	Подпись	Дата		

Time/Div	0,1	1	10
Тпок ,мкс	9,99	9,99	9,993
Δ , MKC	0,01	0,01	0,07
∂,%	1%	1%	7%

2) $0,02~{\rm k}\Gamma$ ц, среднеквадратическое значение напряжения $0,5\,{\rm B}$ $T{\approx}50{\rm mc}$

Time/Div	0,1	1	10
Тпок, мс	49,9	50	49,26
Δ, мс	0, 1	0	0,74
∂ ,%	2	0	1,5

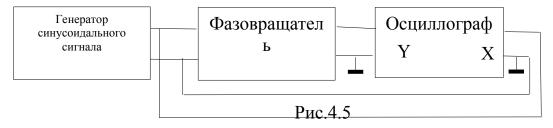
f, кГц	$N_{ m T}$ При N	т При τ=1	№ При	δτ, %	$\delta_{T\%}$	δ_T ,%
	τ=0,1		τ=10	При	При	При
				τ=0,1	τ=1	τ=10
100	99,9	9,99	0,99	± 10	± 1	±0,1
0,02	499	50	4,93	±0,2	±0,02	±0,002

f, кГц	ε _T мс При τ=0,1	ε_T мс При τ =1	ε_T мс При τ =10
100	0,99	0,09	0,009
0,02	0,099	0,01	0,001

f, кГц	Т , При τ=0,1	Т, При τ=1	Т, При τ=10
100	9≤9,99≤10,98 ,мкс	9,9≤9,99≤10,08 ,мкс	9,984≤9,993≤10,002,мкс
0,02	49,801≤49,9≤49,999, мс	49,99≤50≤50,01, мс	49,259≤49,26≤49,261, мс

- 4.3. Измерить частоту и период того же сигнала с помощью электронного осциллографа. Оценить погрешность результатов измерения.
- 4.3.1. Подать сигнал неизвестной частоты с выхода генератора лабораторного стенда на вход Y осциллографа; установить переключатель

							Лист
						ТГТУ 11.03.01.010	
Ī	⁄ 1зм.	Лист	№ докум.	Подпись	Дата		


развертки **Время**/дел в такое положение, при котором на экране видны 5 - 8 периодов сигнала.

4.3.2. Измерить отрезок l, дел, в котором укладывается целое число N периодов сигнала, и вычислить его частоту $f_c = \frac{N}{l \cdot k_p}$. Оценить погрешность таких измерений и записать полученный результат измерения частоты с учетом этой погрешности.

$$f_H = 250 \kappa \Gamma u T = 4 M \kappa C f_s = 248, 8 \kappa \Gamma u$$

	Δ абсолютная	Относительная δ ,%	Приведенная $\gamma\%$
f, кГц	1,2кГц	0,4	0,48
T	0,02мкс	0,5	0,49

- 4.4. Измерить фазовый сдвиг между напряжениями на входе и выходе фазосдвигающего устройства с помощью электронно-лучевого осциллографа. Фазовый сдвиг измерить на примере прохождения синусоидального сигнала через RL и RC-цепочки. Оценить погрешность результатов измерения.
- 4.4.1. Собрать схему согласно рис.4.5. Установить частоту сигнала генератора в диапазоне 1 2 кГц.

4.4.2. Регулируя напряжение на выходе генератора, коэффициенты усиления каналов X и Y получить на экране осциллограмму в виде эллипса, размеры которого находятся в пределах 2/3 размеров экрана, а оси ориентированы по диагоналям экрана (рис.4.6).

					ı
					l
Изм.	Лист	№ докум.	Подпись	Дата	

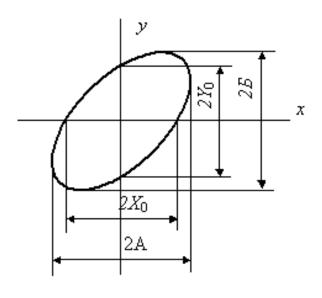
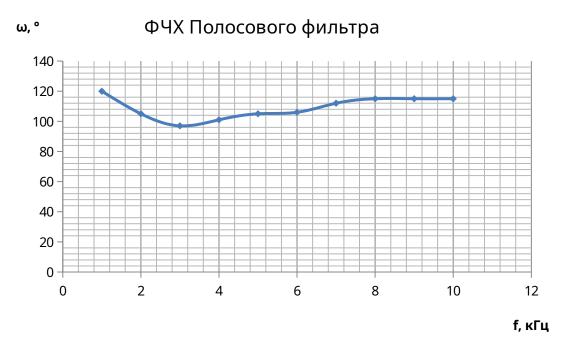


Рис. 4.6

4.4.3. Измерить длину отрезков 2A, $2X_0$, и 2B, $2Y_0$ в делениях шкалы осциллографа. Вычислить значение фазового сдвига, вносимого четырехполюсником:


$$\phi = \arcsin \frac{2Y_0}{2B}; \phi = \arcsin \frac{2X_0}{2A}. \tag{4.19}$$

	2A	$2X_0$	2Б	2Y ₀	$\phi = \arcsin \frac{2Y_0}{2B}$	$\phi = \arcsin \frac{2X_0}{2A}$
RC	8	5,6	5,2	3,7	45°	44,4°
RL	9,8	6,4	6,2	4	40°	40,5°
LC	1,4	0,8	4,8	3,6	48°	35°

- 4.4.4. Сравнить полученные значения. Они могут различаться вследствие погрешности измерения указанных отрезков. Оценить эту погрешность и погрешность измерения фазового сдвига. Записать результат измерения вместе с оценкой погрешности, используя правила представления результатов измерений.
 - 4.5. Измерить фазо-частотную характеристику полосового фильтра.
- 4.5.1. Снять по осциллографу и частотомеру фазо-частотную характеристику для 10-15 значений частот.

f, кГц	1	2	3	4	5	6	7	8	9	10
ω, °	120	105	97	101	105	106	112	115	115	115

					ТГТУ 11.03.01.010	Г
Изм.	Лист	№ докум.	Подпись	Дата		

Вывод:при выполнении лабораторной работы мы ознакомились с методами и средствами измерений частоты, фазового сдвига, временных интервалов и с методикой оценки погрешности результатов измерений.

Изм.	Лист	№ докум.	Подпись	Дата