Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт/Факультет	- Вечерне-	заочного обучен	RИН
Кафедра	Недропольз	ования	
Скоросп	пь химической	і реакции	
Отнат по па	бораторной рабо	ora No. 1	
Order no na		ore 14 <u>4</u>	
	Вариант №4		
по дисциплине	Химия		_
Выполнил Студент, номер группы	(подпись)	ОП3-22-1	М.Е. Баргуев И. О. Фамилия
Принял Должность			О.В. Кузнецова
	(подпись)		И. О. Фамилия

Лабораторная работа Скорость химической реакции

Цель работы: изучить понятие «скорость реакции», зависимость скорости реакции от концентрации (закон действия масс), природы реагирующих веществ, присутствия катализатора и температуры (правило Вант-Гоффа).

Выполнение работы

В данной лабораторной работе зависимость скорости реакции от концентрации реагирующих веществ и температуры исследуется на примере взаимодействия тиосульфата натрия с серной кислотой:

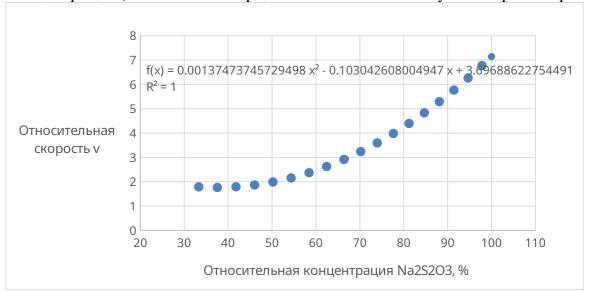
$$Na_2S_2O_3 + H_2SO_4 = Na_2SO_4 + SO_2 + S \downarrow + H_2O$$
.

Признаком окончания реакции является помутнение раствора вследствие выделения серы. Время, которое проходит от начала реакции до заметного появления мути, позволяет судить об относительной скорости реакции.

Опыт 1. Зависимость скорости реакции от концентрации реагирующих веществ

В три пробирки отмерить по 3 мл раствора серной кислоты. В три другие пробирки отмерить раствор тиосульфата: в первую пробирку 6 мл раствора тиосульфата натрия, во вторую -4 мл раствора тиосульфата, в третью -2 мл раствора тиосульфата. Затем во вторую пробирку добавляем 2 мл воды, в третью -4 мл воды.

В первую пробирку с тиосульфатом быстро прилить кислоту и встряхнуть пробирку несколько раз. Замерить время от начала реакции до заметного помутнения раствора. Затем так же поступить с другими приготовленными растворами тиосульфата.


Требования к результатам опыта

Исходные данные и результаты расчетов занести в таблицу 1.

Таблица 1 Данные опыта и результаты расчетов

Номер	Объем, мл		Относительная	Dnova	Относительна	
пробирк	Na_2S_2O	H_2O	H ₂ SO ₄	концентрация	Время	я скорость
И	3	П2О	H ₂ SO ₄	$Na_2S_2O_3$, %	τ, c	$V = 100/\tau$
1	6	0	3	100	14	7,14
2	4	2	3	66,7	34	2,94
3	2	4	3	33,3	56	1,79

- 1. Рассчитать относительную скорость реакции по соотношению $V = 100/\tau$.
- 2. Зависимость скорости реакции от концентрации реагирующих веществ выразить графически, откладывая на оси абсцисс относительную концентрацию, а на оси ординат относительную скорость реакции.

3. Сделать вывод о зависимости скорости реакции от концентрации; пояснить, какой линией выражается найденная зависимость; указать, проходит ли график через начало координат и объяснить почему.

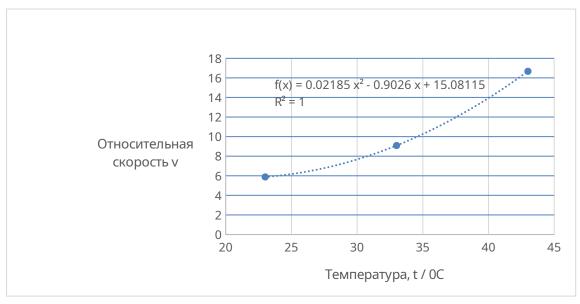
Вывод: при повышении концентрации реагирующих веществ повышается скорость химической реакции.

Опыт 2. Зависимость скорости реакции от температуры

Отмерить в три пробирки по 3 мл раствора серной кислоты, в три другие пробирки – по 3 мл раствора тиосульфата натрия.

Первую пару пробирок (кислота – тиосульфат) и термометр поместить в стакан с водой комнатной температуры. Через 3–5 мин, когда растворы в пробирках примут температуру воды, записать показания термометра. Слить растворы в одну пробирку и встряхнуть ее несколько раз. Замерить время от начала реакции до появления заметного помутнения.

Для следующего определения в стакан подлить горячей воды так, чтобы температура стала на 10°С выше. Поместить вторую пару пробирок и оставить их на 3–5 мин, поддерживая температуру постоянной. Слить содержимое пробирок и замерить время до помутнения раствора. Повторить опыт с третьей парой пробирок, повысив температуру еще на 10°С.


Требования к результатам опыта

Исходные данные и результаты расчетов занести в таблицу 2.

Данные опыта и результаты расчетов

Номер	Температура	Время т, с	Относительная	γ	Уср.
пробирки	t, °C		скорость, V=100/τ		
1	23	17	5,88	1,55	1,69
2	33	11	9,09	1,83	
3	43	6	16,67		

- 1. Рассчитать относительную скорость реакции по соотношению $V = 100/\tau$.
- 2. Вычислить температурный коэффициент скорости реакции γ , разделив V_2 на V_1 и V_3 на V_2 . Найти среднее значение температурного коэффициента $\gamma_{\rm cp.}$
- 3. Зависимость скорости реакции от температуры выразить графически, откладывая на оси абсцисс температуру, а на оси ординат относительную

скорость.

4. Сделать вывод о зависимости скорости химической реакции от температуры; пояснить, какой линией выражается найденная зависимость; указать, проходит ли график через начало координат и объяснить почему.

Вывод: при повышении температуры повышается скорость химической реакции.