Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных технологий

Кафедра компьютерного моделирования информационных систем

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Электроника и схемотехника»

Исследование вольт-амперных характеристик элементов электрических цепей

Рук	оводит	ель
Кан	д. физ-	мат. наук, доцент
	_	Е. А. Андреев
"	"	2023 г.
Исп	олните	ЛЬ
студ	цент гру	уппы 20ПИ(б)РЗПО
		И. А. Докторов
"	11	2023 г.

Содержание

1 Цель работы	3
2 Теоретические сведения	3
3 Практическая часть	4
3.1 Эксперимент 1	
3.2 Эксперимент 2	6
3.3 Эксперимент 3	7
4 Вывол	9

1 Цель работы

Цель данной лабораторной работы — исследование вольт-амперных характеристик (BAX) элементов электрических цепей постоянного тока, а также исследование компьютерной программы схемотехнического моделирования MultiSim для исследования электрических цепей и явлений, в них протекающих.

2 Теоретические сведения

Электрическая цепь – совокупность устройств, образующих пути для электрического тока, электромагнитные процессы в которой могут быть описаны разделами физики, изучающими электродвижущую силу, электрический ток и напряжение.

Основные элементы любой электрической схемы — источники и потребители, а также устройства, осуществляющие передачу энергии, например, провода.

Источниками электромагнитной энергии являются различные генерирующие устройства, преобразующие энергию какого-либо другого вида, будь то тепловую или механическую, в электромагнитную.

Примером источника энергии может служить гальванический элемент, аккумулятор, или некоторый преобразователь, например, солнечная батарея.

Приемники – устройства, переводящие электромагнитную энергию в какой-либо другой вид энергии.

Все элементы цепи можно разделить на активные и пассивные. К активным относятся такие устройства, как полупроводниковые приборы и источники электромагнитной энергии. К пассивным — прочие потребители (например, конденсаторы и резисторы), и соединительные провода.

У электрической схемы есть несколько основополагающих понятий, таких как ветвь, узел, контур.

Ветвь – участок электрической цепи, в пределах которого ток имеет одно и то же значение.

Узел – место соединения трех или более ветвей.

Контур в электрической цепи — замкнутый путь, который проходит по нескольким ветвям так. Что ни одна ветвь и ни один узел не встречаются более одного раза.

Вольт-амперной характеристикой называется зависимость силы тока в некотором элементе электрической цепи от напряжение, которое приложение к его зажимам.

3 Практическая часть

3.1 Эксперимент 1

Задание – снять вольт-амперную характеристику (ВАХ) для реального и идеального источника тока и напряжения.

Схема для замера BAX идеального источника напряжения представлена на рисунке 1.

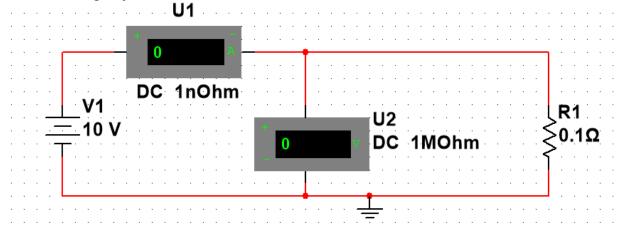


Рисунок 1 – Схема измерения идеального источника напряжения.

Для получения BAX изменяем сопротивление резистора R1 от 0.1 Ом до 1000 Ом, каждый раз увеличивая его на один порядок. В результате получаем таблицу 1 – данные BAX для реального источника напряжения.

, , ,					
Сопротивление R,	0.1	1	10	100	1000
Ом					
Сила тока I,A	100	10	1	0.1	0.01
Напряжение U, В	10	10	10	10	10

Таблица 1 – Данные ВАХ идеального источника напряжения

Для получения BAX реального источника напряжения дополним схему внутренним сопротивлением источника напряжения R2, чтобы получить его схему замещения. Эта схема изображена на рисунке 2.

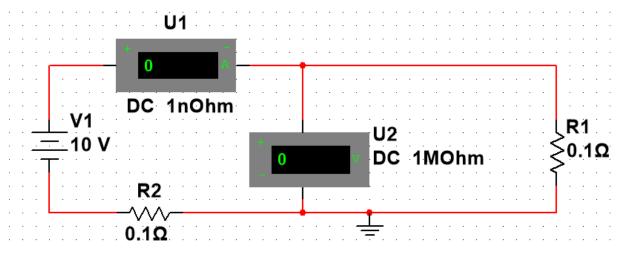


Рисунок 2 – Схема с реальным источником напряжения

Таблица 2 – Данные ВАХ реального источника напряжения

Сопротивление R,	0.1	1	10	100	1000
Ом					
Сила тока I,A	50	9.09	0.99	0.1	0.01
Напряжение U, В	5	9.09	9.9	9.99	9.99

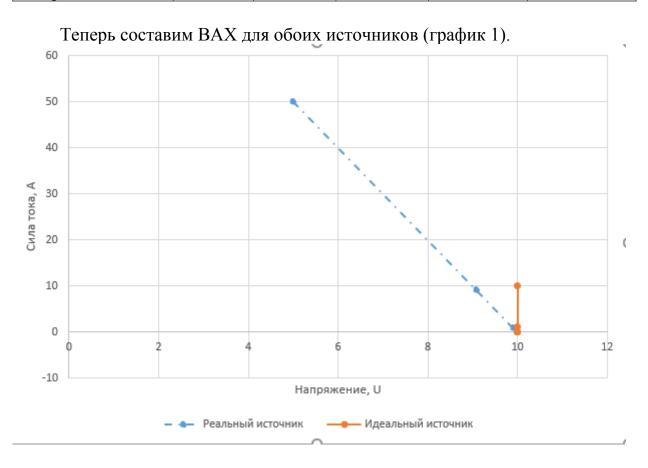


График 1 – ВАХ реального и идеального источников тока

Данные с графика совпадают с теорией: напряжение на клеммах идеального источника напряжения не зависит от силы тока во внешней цепи, в то время как напряжение реального источника напряжения падает с увеличением силы тока во внешней цепи.

3.2 Эксперимент 2

Задание – Снять ВАХ идеального и реального источников тока. Построены две схемы (см. рисунок 3 и 4). Аналогично с п. 3.1 приведены две таблицы ВАХ (см. таблица 3 и 4)

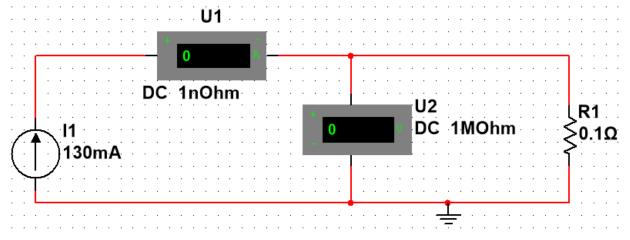


Рисунок 3 – Схема с идеальным источником напряжения

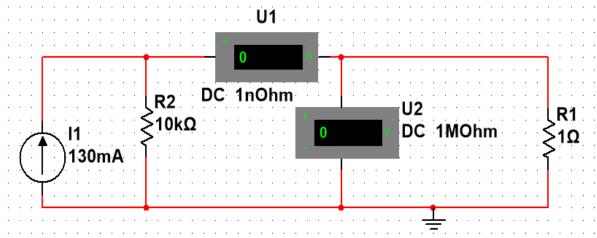


Рисунок 4 – Схема с реальным источником напряжения

Таблица 3 – Данные ВАХ идеального источника тока

Сопротивление R,	1	10	100	1000	10000
Ом					
Сила тока I,A	0.13	0.13	0.13	0.13	0.13
Напряжение U, В	0.13	1.3	12.99	129.85	1286

Таблица 4 – Данные ВАХ реального источника тока

Сопротивление R,	1	10	100	1000	10000
Ом					
Сила тока I,A	0.13	0.13	0.129	0.118	0.065
Напряжение U, В	0.13	1.29	12.87	118.08	647.19

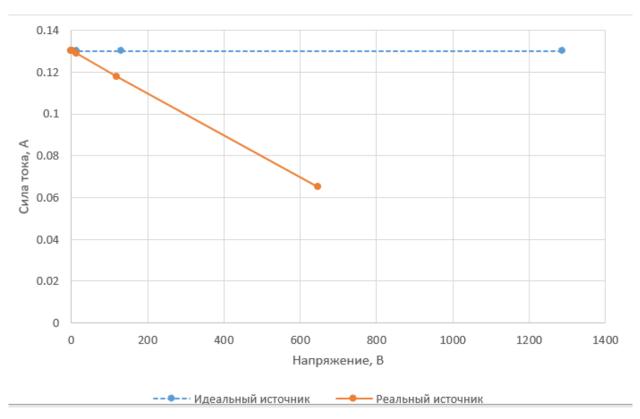


График 2 – ВАХ реального и идеального источников тока

Данные ВАХ совпадают с теорией. Сила тока идеального источника тока не зависит от внешнего напряжения, а сила тока реального источника тока уменьшается при увеличении внешнего напряжения.

3.3 Эксперимент 3

Задание – Снять ВАХ линейного резистивного элемента. Собрана схема (см. рисунок 5).

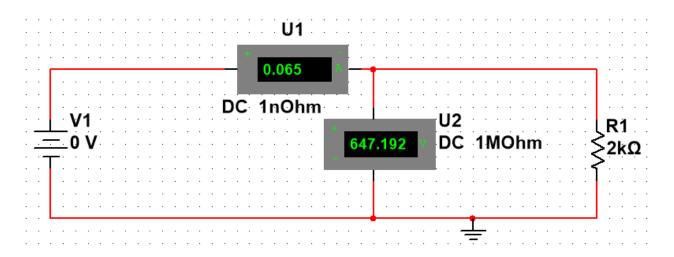


Рисунок 5 – Схема с исследуемым резистивным элементом

Изменяя значение напряжения источника напряжения при двух различных сопротивлениях $R=2000~\mathrm{Om}$ и $2R=4000~\mathrm{Om}$, получаем данные BAX (таблица 5).

Таблица 5 – Данные ВАХ резистивного элемента

Напряжение	0	0.1	1	10	100
источника тока Е, В					
Ток в резисторе R, A	0	0.05m	0.5m	5.01m	0.05
Ток в резисторе 2R, A	0	0.025m	0.25m	2.51m	0.025

По данным ВАХ составляем график 3.

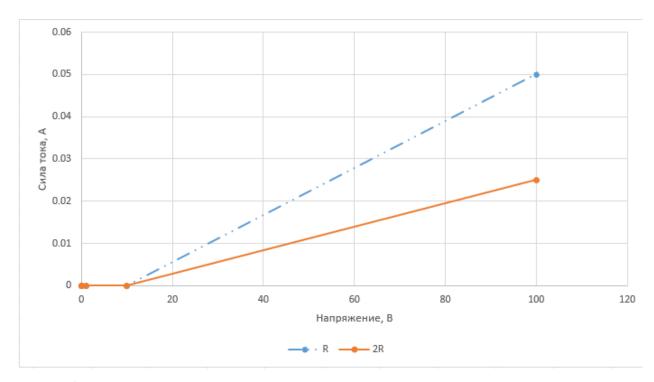


График 3 – BAX идеального резистивного элемента при двух различных сопротивлениях

Из этого графика BAX можно сделать вывод, что зависимость силы тока в идеальном резистивном элементе от напряжения прямо пропорциональна и определяется законом Ома.

4 Вывод

Цели лабораторной работы выполнены – была снята ВАХ реального и идеального источников напряжения, тока, а также резистивного элемента. Полученные данные подтверждают теоретические данные об электрических цепях.