Отчет по лабораторной работе №2

Методы измерения вносимого затухания в оптических волокнах

Схемы

Схема измерения уровня выходного оптического сигнала излучателя

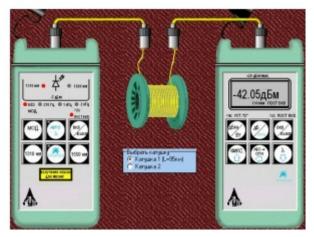


Схема измерения затухания в катушке с волокном методом разности уровней

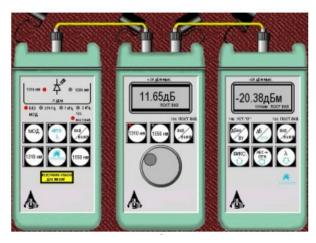


Схема измерения затухания в катушке с волокном методом замещения при помощи аттенюатора

Выполнение работы

Коммутация разъема	а, соединяющего	ии с ОВ				
№ коммутации	Мощность Р, л	икВт, при λ, нм	Уровень Ү, дБм,	Уровень Ү, дБм, при λ, нм		
	λ = 1310 нм	λ = 1550 нм	λ = 1310 нм	λ = 1550 нм		
1	145,37	139,7	-8,51	-8,34		
2	145,41	137,89	-8,58	-8,33		
3	146,33	137,57	-8,59	-8,32		
4	146,55	138,27	-8,56	-8,31		
5	146,78	137,85	-8,58	-8,30		
Среднее значение	146,088	138,256	-8,564	-8,32		
СКО	0,656902	0,844796	0,032094	0,015811		
СКО среднего	0,293775	0,377804	0,014353	0,007071		
значения						
Коммутация разъема	а, соединяющего	ОВ с ПИ		·		
№ коммутации	Мощность Р, л	икВт, при λ, нм	Уровень Ү, дБм, при λ, нм			
	1310	1550	1310	1550		
1	144,31	138,02	-8,37	-8,57		
2	144,39	137,85	-8,37	-8,58		
3	144,25	137,73	-8,37	-8,58		
4	144,22	137,86	-8,38	-8,58		
5	144,54	137,93	-8,37	-8,57		
Среднее значение	144,342	137,878	-8,372	-8,576		
СКО	0,128335	0,107098	0,004472	0,005477		
СКО среднего значения	0,057393	0,047896	0,002	0,002449		

Первое оптическое волокно L_1 = 95 км.								
Nº	Υ₀, дБм, при λ, нм		Υ₁, дБм, при λ, нм		а, дБ, при λ, нм		α , дБ/км, при λ , нм	
коммутации	1310	1550	1310	1550	1310	1550	1310	1550
1	-8,34	-8,51	-42,16	-28,02	33,82	19,51	0,356	0,205368
2	-8,33	-8,58	-42,13	-28,04	33,8	19,46	0,355789	0,204842
3	-8,32	-8,59	-42,12	-28,03	33,8	19,44	0,355789	0,204632
4	-8,31	-8,56	-42,13	-28,02	33,82	19,46	0,356	0,204842
5	-8,30	-8,58	-42,09	-28,04	33,79	19,46	0,355684	0,204842
Среднее	-8,32	-8,564	-42,126	-28,03	33,806	19,466	0,355853	0,204905
значение								
СКО	0,015811	0,032094	0,0251	0,01	0,013416	0,026077	0,000141225	0,000274493
СКО среднего значения	0,007071	0,014353	0,011225	0,004472	0,006	0,011662	0,000063157	0,000122757

Второе оптическое волокно α = 76,09 / 76,51 дБ/км (при λ = 1310/1550 нм)								
Nº	Υ₀, дБм, при λ, нм		Y_1 , дБм, при λ , нм		а, дБ, при λ, нм		$lpha$, дБ/км, при λ , нм	
коммутации	1310	1550	1310	1550	1310	1550	1310	1550
1	-8,34	-8,51	-35,4	-24,18	27,06	15,67	0,356	0,205368
2	-8,33	-8,58	-35,44	-24,27	27,11	15,69	0,355789	0,204842
3	-8,32	-8,59	-35,37	-24,26	27,05	15,67	0,355789	0,204632
4	-8,31	-8,56	-35,42	-24,26	27,11	15,7	0,356	0,204842
5	-8,3	-8,58	-35,37	-24,24	27,07	15,66	0,355684	0,204842
Среднее							0,355853	0,204905
значение	-8,32	-8,564	-35,4	-24,242	27,08	15,678		
СКО	CKO 0,03209						0.000141	0,000274
	0,015811	4	0,03082207	0,036331804	0,028284	0,016432	0,000141	0,000274
СКО								
среднего		0,01435					0,000063157	0,000123
значения	0,007071	3	0,013784049	0,016248077	0,012649	0,007348		

№ волокна	Υ₁, дБм, при λ, нм		а, дБ, при λ, н	IM	$lpha$, дБ/км, при λ , нм	
	1310 1550		1310	1550	1310	1550
1	-42,12	-28,03	33,3	19,25	0,437	0,251
2	-35,41	-24,21	26,7	15,5	0,35	0,202587

Длина	Y ₀ , дБм	Y _{max} , дБм	Y _{min} , дБм	A _{min} , дБ	A _{max} izm, дБ	A _{min} izm, дБ	А _{тах} , дБ
волны, нм							
1310	-8,34	-11,75	-68,72	3,0	60	3,41	60,38
1550	-8,54	-11,94	-68,89	3,20	60,15	3,4	60,35

Ответы на контрольные вопросы

1. Источник излучения генерирует электромагнитную волну определенной частоты и мощности. Его основная функция - передача сигнала на определенное расстояние.) Позволяет на одном оптическом выходе иметь излучение с длинами волн =1310 и 1550 нм. Кроме того, возможен режим поочередного переключения длины волны ИИ с =1310 на 1550 нм и обратно. Излучение ИИ может быть непрерывным (частота модуляции f = 0 Γ ц) с постоянной мощностью или модулированным с частотами f = 270, 1000 или 2000 Γ ц.

На передней панели ИИ находятся 6 клавиш:

1к – включение/ выключение питания;

 2κ – включение длины волны ч = 1310 нм;

3к – включение длины волны ч=1550 нм;

 4κ – выбор частоты модуляции f = 0, 270, 1000 или 2000 Гц;

5к – включение режима поочередного переключения длин волн ИИ с

ч = 1310 на 1550 нм и обратно;

6к – включение режима передачи информации об установленной длине волны ИИ.

Нажатие клавиш производится щелчком мыши на выбранной клавише.

На передней панели ИИ находятся 9 светодиодных индикаторов:

1и – индикатор включения прибора на постоянную работу (режим экономии электроэнергии отключен);

2и – два индикатора, показывающих, какой источник включен;

3и – четыре индикатора частоты модуляции источника;

4и – индикатор режима поочередного переключения длин волн ИИ с Ψ =1310 на 1550 нм и обратно;

5и – индикатор включения режима передачи информации об установленной длине волны ИИ.

- 2. Приемник оптического излучения позволяет проводить измерения:
- уровня мощности оптического излучения, дБм;
- мощности оптического излучения, мкВт;
- затухания в волоконнооптическом тракте и в пассивных компонентах волоконнооптических линий связи, дБ.

Результат измерения в мкВт пропорционален величине постоянного напряжения Uf поступающего на вход АЦП:

$$U_f = P_f \cdot S_\lambda \cdot K_\lambda,$$

где $S\lambda$ — токовая чувствительность фотодиода. В связи с тем, что чувствительность всех квантовых фотоприемников, в том числе и p-i-пфотодиодов, сильно зависит от длины волны излучения для исключения этой погрешности необходимо выполнить условие $S\lambda$ - $K\lambda$ = const для любой длины волны λ измеряемого излучения.

- **3.** Оптический аттенюатор предназначен для внесения в волоконно-оптический тракт на данной длине волны известного регулируемого затухания от а = 3 до 60 дБ с разрешающей способностью da = 0,05 дБ. Воспроизводимость установленной величины затухания +-0,1 дБ. Максимальный входной уровень ОА, при котором сохраняются параметры ОА, составляет +20 дБм (100 мВт). Затухание устанавливается при помощи вращающейся рукоятки 1, которая позволяет изменять затухания в указанных пределах за 20 оборотов.
- 4. Измерение методом разности уровней:
- Соединяются ИИ с ПИ коротким оптическим патчкордом. Производятся многократные измерения уровней выходной оптической мощности излучателей ПИ Y0 на двух длинах волн в дБм при отключении и повторном подключении патчкорда к разъему ИИ. Результаты измерений записываются.
- Соединяются ИИ с ПИ первым измеряемым оптическим волокном
- Производятся многократные измерения уровней выходной оптической мощности излучателей ПИ Y1 на двух длинах волн в дБм при отключении и повторном подключении патчкорда к разъему ИИ. Результаты измерений записываются.
- Рассчитывается затухание первого оптического волокна а и коэффициент затухания *а*
- Соедините ИИ с ПИ вторым измеряемым оптическим волокном
- Производятся многократные измерения уровней выходной оптической мощности излучателей ПИ на двух длинах волн в дБм при отключении и повторном подключении патчкорда к разъему ИИ.
- Рассчитывается затухание а по и длину второго оптического волокна L2. Метод замешения:
- Соединить ИИ с ПИ первым оптическим волокном.
- Измерить уровень выходящей из первого волокна оптической мощности на двух длинах волн.
- Вместо первого волокна подключить короткими патчкордами ОА

(команда «соединить двумя поводками через аттенюатор») и, изменяя его затухание, добейтесь таких же показаний ПИ, которые были получены в п. 2 для двух длин волн. Метод сравнения уровней основан на сравнении уровней мощности на различных участках оптической линии, в то время как метод замещения заключается в замене определенных участков линии на аттенюаторы и измерении изменения уровня мощности, что позволяет рассчитать коэффициент затухания и длину оптических волокон. Метод замещения более точен, но требует тщательной настройки аттенюаторов и может быть более сложным в использовании. Метод сравнения уровней проще в использовании, но может быть менее точным, особенно при наличии шумов и других искажающих факторов.

5. Для выполнения многократных измерений вносимого затухания в оптических волокнах используется несколько методов, включая метод сравнения уровней, метод замещения и метод разности уровней.

Для метода сравнения уровней соединяют ИИ с ПИ коротким оптическим патчкордом и производят многократные измерения уровней выходной оптической мощности излучателей ПИ на двух длинах волн. Затем ИИ соединяют с ПИ первым измеряемым оптическим волокном и снова производят многократные измерения уровней выходной оптической мощности на двух длинах волн. По полученным данным рассчитывают коэффициент затухания первого оптического волокна и затухания второго оптического волокна, а также его длину.

Для метода замещения необходимо измерить уровень выходящей из первого волокна оптической мощности на двух длинах волн, затем подключить короткими патчкордами ОА и изменяя его затухание, добиться таких же показаний ПИ, которые были получены на первом этапе. По полученным данным рассчитывается коэффициент затухания и длина оптического волокна. Для метода разности уровней необходимо измерить уровни выходной оптической мощности излучателей ПИ Y0 на двух длинах волн при отключении и повторном подключении патчкорда к разъему ИИ. Затем соединить ИИ с ПИ первым оптическим волокном и произвести многократные измерения уровней выходной оптической мощности излучателей ПИ на двух длинах волн. По полученным данным рассчитывается коэффициент затухания и длина оптического волокна.

6. Источниками случайных погрешностей измерения коэффициента затухания могут быть шумы на линии связи, погрешности измерительного оборудования и погрешности в установке и подключении оптических элементов. Для уменьшения случайных погрешностей необходимо производить многократные измерения и усреднять полученные результаты. Источниками систематических погрешностей могут быть ошибки в подключении и установке оптических элементов, ошибки в калибровке измерительного оборудования, некорректная настройка аттенюаторов и других устройств, а также смещение измерительных приборов. Для предотвращения систематических погрешностей необходимо производить калибровку измерительного оборудования и точно устанавливать и подключать оптические элементы, а также использовать проверенные и точные приборы и методы измерения.

В обоих методах возможны ошибки связанные с нештатными ситуациями, такими как повреждение оптических волокон, изменение параметров и др.