Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»

кафедра физики

ОТЧЕТ по лабораторной работе № 19 «Исследование эффекта Холла в полупроводнике»

Выполнил: Курчеев Сергей Дмитриевич

Группа № 2362

Преподаватель: Попов Юрий Игоревич

Вопросы		Задачи ИДЗ				Даты	Итог	
		17	19				коллоквиума	

Санкт-Петербург, 2023

Индивидуальные вопросы

17)Запишите силы взаимодействия двух параллельных проводников с током. Нарисуйте как направлены эти силы.

Если взять два параллельных проводника с токами, расположенных на расстоянии друг от друга, то вокруг каждого из них будет возникать собственное магнитное поле, причем проводник с током I_l окажется в магнитном поле проводника с током I_2 и наоборот. В результате на проводники будут действовать электромагнитные силы F_l и F_2 , направление которых определяется по правилу левой руки.

19) Сила Лоренца. Изобразите на рисунке направление силы Лоренца.

Электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Возникает под действием магнитной индукции, перпендикулярна вектору скорости движущейся частицы

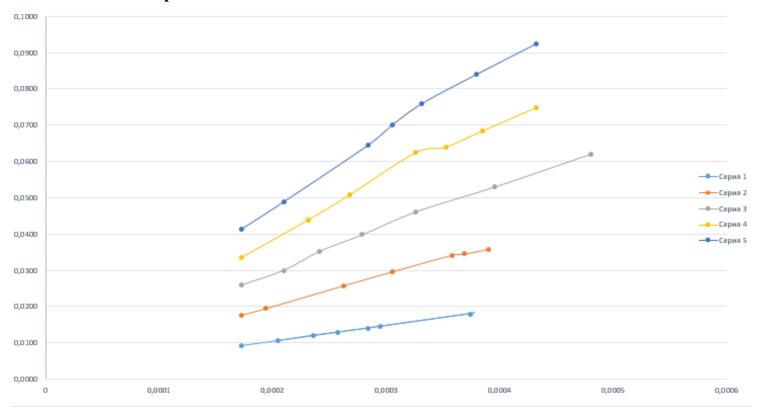
$$F_{n} = qvB \cdot sin\alpha$$
 или $F_{n} = \overline{e}[\overline{B}, \overline{v}]$

Обработка результатов

по лабораторной работе № 19

«Исследование эффекта Холла в полупроводнике»

1. Рассчёт значения U_x и вычисление значений индукции магнитного поля


 U_x : (значения сопоставлены значениям из протокола наблюдений)

u_x	1	2	3	4	5	6	7
1	0,0105	0,0120	0,0129	0,0140	0,0145	0,0180	0,0091
2	0,0177	0,0195	0,0258	0,0296	0,0342	0,0345	0,0358
3	0,0260	0,0300	0,0353	0,0398	0,0462	0,0530	0,0621
4	0,0335	0,0438	0,0508	0,0625	0,0640	0,0684	0,0749
5	0,0414	0,0489	0,0645	0,0700	0,0760	0,0840	0,0925

В: (значения сопоставлены значениям из протокола наблюдений)

В	1	2	3	4	5	6	7
1	0,0002045	0,000236	0,000258	0,000284	0,000295	0,000374	0,000173
2	0,0001727	0,000194	0,000263	0,000305	0,000358	0,000369	0,00039
3	0,0001727	0,00021	0,000242	0,000279	0,000326	0,000395	0,00048
4	0,0001727	0,000231	0,000268	0,000326	0,000353	0,000385	0,000432
5	0,0001727	0,00021	0,000284	0,000305	0,000332	0,000379	0,000432

2. Построение зависимости $U_x = f(B)$

3. Средние значение и доверительная погрешность для R

 $R = tg \cdot d$. Для 5 серий замеров:

Угловь	R	
cep 1	47,16981	2,3585E-05
cep 2	84,90566	4,2453E-05
сер 3	107,8167	5,3908E-05
cep 4	176,6724	8,8336E-05
cep 5	202,1563	0,00010108

Среднее значение R_{cp} =6,187·10⁻⁵

Доверительная погрешность $R_{oos} = t_{95,5} \cdot R_{none} = 4,506 \cdot 10^{-5}$

4. Консентрация п и их подвижность μ

$$R = \frac{1}{ne}$$
; $n = 3.232 \cdot 10^{10} \mu = R\sigma$; $\mu = 2.104 \cdot 10^{-5}$

Вывод

В ходе этой лабораторной работы мы изучили действе магнитного поля на движущиеся заряды при исследовании эффекта Холла, определение постоянную Холла с учетом погрешностей, а также определили концентрацию п носителей тока в полупроводнике и их подвижность μ . Получили семейство зависимости $U_x = f(B)$ для разных токов I_1 и построили графики.