Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Санкт-Петербургский горный университет Кафедра общей и технической физики .

Отчет по лабораторной работе N 2

По дисциплине: Физика									
(на	именование учебной дисциг	плины, согласно учебном	у плану)						
Тема работы:	Оценка точности пр	эямых и косвенных	к измерений						
De tra servicio amendata am	ЛПГ 22		Francisco A O						
Выполнил: студент гр.	<u>АПГ-22</u> (шифр группы)	(подпись)	<u>Бураченкова А.О</u> (Ф.И.О)						
Overviere									
Оценка:									
Дата:									
-									
Проверил									
руководитель работы:	(должность)	(подпись)	(Ф.И.О)						
	(AOMAROCID)	(подпись)	(Ψ.H.O)						

Санкт-Петербург 2022 Цель работы: Обработать данные прямых и косвенных измерений физических величин

Явление, изучаемое в работе: возникновение тока на участке электрической цепи.

Краткие теоретические сведения:

Основные определения физических величин, явлений, процессов:

Электрический ток – упорядоченное движение частиц под действием электрического поля.

Электрическое поле – одно из двух компонентов электромагнитного поля.

Закон Ома — физический закон, определяющий связь электрического напряжения с силой тока, протекающего в проводнике, и сопротивлением проводника.

Погрешность измерения – отклонение измеренного значения величины от её истинного значения.

Сила тока – количество электричества, проходящее через поперечное сечение проводника за одну секунду

Напряжение — физическая величина, характеризующая действие электрического поля на заряженные частицы.

Сопротивление — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока.

Класс точности измерительного прибора — это характеристика, определяемая нормированными предельными значениями погрешности средства измерений. Способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ 8.401-80.

Схема установки:

Электрическая схема

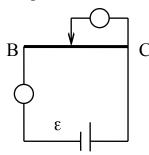


Рис. 1. Электрическая цепь: ε - источник тока, A - амперметр, V - вольтметр, BC - исследуемый участок.

1. Вывод из закона Ома - $I = \frac{U}{R}$:

$$R = \frac{U}{I}$$
, где I – сила тока [A], U – напряжение [B], R - сопротивление [Ом]

2. Экспериментальное удельное сопротивление:

$$p_3 = \frac{U \cdot \pi \cdot d^2}{I \cdot 4I}$$
, где d — диаметр проводника [м], l — длина проводника [м]

3. Средняя абсолютная погрешность прямых измерений диаметра проволоки:

$$\Delta \overline{d} = \frac{1}{n} \sum_{i=1}^{n} \overline{i} \overline{d} - d_i \vee \overline{i}$$

где п - количество измерений

4. Абсолютная погрешность величины, измеренной прибором:

$$\Delta x = \mathcal{E}_p \cdot X_{np} = X_{np} \cdot \frac{K}{100}$$

где $X_{\it np}$ – максимальный показатель прибора , K – класс точности прибора ,

$$\mathscr{E}_{p}-$$
 относительная погрешность

5. Относительная абсолютная погрешность косвенного измерения удельного сопротивления:

$$\varepsilon_{\rho} = \frac{\overline{\Delta \rho_{9}}}{\overline{\rho_{9}}} = \frac{\overline{\Delta U}}{\overline{U}} + \frac{\overline{\Delta I}}{\overline{I}} + \frac{\overline{\Delta I}}{\overline{I}} + \frac{2\overline{\Delta d}}{\overline{d}}$$

6. Средняя квадратичная ошибка среднего значения:

$$\sigma_d = \sqrt{\frac{1}{n \cdot (n-1)} \sum_{i=1}^n (d_i - \overline{d})^2}$$

7. Абсолютная погрешность сопротивления:

$$\Delta R = R\left(\frac{\Delta U}{U} + \frac{\Delta I}{I}\right)$$

8. Средняя квадратичная погрешность измерения

$$\sigma_{\scriptscriptstyle R} \! = \! R \cdot \sqrt{\left(\frac{\sigma_{\scriptscriptstyle I}}{I} \right)^2 \! + \! \left(\frac{\sigma_{\scriptscriptstyle U}}{U} \right)^2}$$
, где

 σ – средняя квадратичная погрешность соответствующих измерений

Таблицы измерений.

Таблица с техническими данными прибора (измерения погрешности)

№	Название	Пределы	Число	Цена деления	Класс	Абсолютная
п.п	прибора	измерений	делений		точности	приборная
						погрешность
1	Штангенциркуль	250 мм	250	0.05 мм	-	0,05 мм
2	Микрометр	25 мм	50	0.01 мм	-	0,01 мм
3	Линейка	510 мм	510	1 мм	-	0.05 мм
4	Амперметр	250 мА	50	5 мА	1.5	3,75 мА
5	Вольтметр	1,5 B	30	0.05 B	1.5	22,5 мВ

Таблица 1.

Физическая величина	d_1	d_2	d_3	d_4	d_{5}	d_6	d_7	d_8	d_9	d_{10}	\overline{d}	Δd	σd	$\frac{\Delta d}{\overline{d}}$	$\frac{\sigma d}{\overline{d}}$
Единица измерения / прибор	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
Штангенциркуль	0,35	0,35	0,4	0,4	0,35	0,35	0,4	0,35	0,35	0,35	0,36	0,0035	0,0 133	0,08	0,035
Микрометр	0,38	0,39	0,38	0,39	0,37	0,36	0,38	0,37	0,37	0,37	0,37 6	0,0056	0,0 021	0,01	0,005

Таблица 2.

Физическая величина	l	Δl	I	ΔI	U	ΔU	R	ΔR	σR
Единица измерения / №опыта	СМ	СМ	мА	мА	В	В	Ом	Ом	Ом
1	2		225	3,75	0,05	0,0225	0,2	0,093	0,869
2	5		225		0,10		0,4		
3	10	0,1	225		0,20		0,8		
4	15		225		0,30		1,3		
5	18		225		0,35		1,5		
6	25		225		0,50		2,2		
7	34		225		0,65		2,8		
8	37		225		0,70		3,1		
9	40		225		0,75		3,3		
10	45		225		0,85		3,7		

Исходные данные.

 $l_0 = 510 \text{ MM}$

I = 225 MA

Примеры вычислений

- 1. Систематическая ошибка амперметра: $\Delta I = I_{np} \cdot \frac{K}{100} = 250 \cdot \frac{1.5}{100} = 3,75 \text{ мA}$
- 2. Систематическая ошибка вольтметра: $\Delta U = U_{np} \cdot \frac{K}{100} = 1$, 5 $\cdot \frac{1.5}{100} = 0.0225$ *B*, где K = 1,5 (класс точности амперметра и вольтметра)
- 3. Среднее арифметическое значение диаметра проволоки, измеренной штангенциркулем:

$$\overline{d}_{1} = \frac{(0,35+0,35+0,4+0,4+0,35+0,35+0,35+0,35+0,35+0,35)}{10} = 0,365_{\text{MM}}$$

4. Среднее арифметическое значение диаметра проволоки, измеренной микрометром:

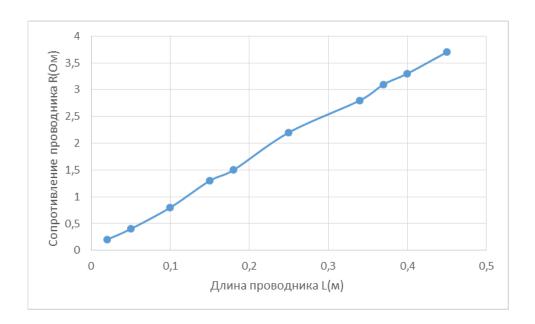
$$\overline{d_2} = \frac{(0,38+0,39+0,38+0,39+0,37+0,36+0,38+0,37+0,37+0,37)}{10} = 0,376_{\text{MM}}$$

- 5. Определим среднюю абсолютную погрешность измерения диаметра проволоки штангенциркулем: $\Delta d_1 = \frac{1}{10} \sum_{i=1}^{10} \dot{c} d_i 0$, $365 \lor \dot{c} 0$,021 мм
- 6. Определим среднюю абсолютную погрешность измерения диаметра проволоки микрометром: $\Delta d_2 = \frac{1}{10} \sum_{i=1}^{10} \dot{c} \, d_i 0$, $3\,76 \lor \dot{c}\, 0$, $0\,08$ мм
- 7. Средняя квадратическая погрешность измерения диаметра штангенциркулем:

$$\sigma_{d\,1} \! = \! \sqrt{\frac{1}{10(10-1)}(\!(0\,,35-0\,,3\,65)^2\cdot 7\!+\!(0\,,4-0\,,365)^2\cdot 3\,)} = 0,0076\;\mathrm{mm}$$

- 8. Аналогично определена средняя квадратическая погрешность измерения диаметра микрометром, σ_{d2} =0, 003 *мм*
- 9. Вычисление значения сопротивления на всех участках цепи по формуле: $R = \frac{U}{I}$

Пример: $R = \frac{0,05}{0,225} = 0$, 2 *Ом*; аналогично заполнен яем оставша ю ся часть таблицы.


10. Средняя квадратичная погрешность сопротивления по формуле:

Пример:
$$\Delta R = R \left(\frac{\Delta U}{U} + \frac{\Delta I}{I} \right) = 0$$
, $2 \cdot \left(\frac{0,0225}{0,05} + \frac{0,00375}{0,225} \right) = 0$, 093 *Ом*, также заполним оставшуюся часть таблицы.

11. Вычислил среднюю квадратичную погрешность сопротивления по формуле

Пример:
$$\sigma_R = R \cdot \sqrt{\left(\frac{\Delta_I}{I}\right)^2 + \left(\frac{\Delta_U}{U}\right)^2} = 1,93 \cdot \sqrt{\left(\frac{0,00375}{0,225}\right)^2 + \left(\frac{0,0225}{0,05}\right)^2} = 0,869 \text{ Ом}$$

12. График зависимости сопротивления от длины проводника:

R = R(l) представляет собой достаточно ровную прямую, что говорит о том, что зависимость сопротивления от длины проволоки является линейной.

13. Среднее значение удельного сопротивления по формуле: $\overline{\rho_{pp}} = \frac{\pi \, \overline{d}^2}{4} t g \alpha$

$$\overline{\rho_{\it pp}} = \frac{(\pi \cdot 0,000365^2)^\square}{4} \cdot \frac{R_2 - R_1}{l_2 - l_1} = \frac{\pi \cdot (0,000365^2)}{4} \cdot \frac{3,7 - 0,2}{0,45 - 0,02} = 8,51 \cdot 10^{-7} \, \text{Ом}^{\text{\tiny L}}\text{M}, где}$$
 ρ – удельное сопротивление [Ом·м]

14. Погрешность результатов косвенного определения удельного сопротивления

$$\overline{\Delta\rho}_{9} = \overline{\rho}_{9} \cdot \left(\frac{\overline{\Delta U}}{\overline{U}} + \frac{\overline{\Delta I}}{\overline{I}} + \frac{\overline{\Delta I}}{\overline{I}} + \frac{2\overline{\Delta d}}{\overline{d}} \right) = \mathcal{L}$$

$$3.51 * 10^{-7} \cdot \left(\frac{0.0225}{0.4} + \frac{0.00375}{0.225} + \frac{0.00005}{0.231} + \frac{2 * 0.000035}{0.000021} \right) = 3.459 \cdot 10^{-7} \text{ Omem}$$

15. Погрешность результатов косвенного определения удельного сопротивления

$$\sigma_{\rho} = \overline{\rho} \sqrt{\left(\frac{\sigma_{J}}{\overline{I}}\right)^{2} + \left(\frac{\sigma_{U}}{\overline{U}}\right)^{2} + \left(\frac{\sigma_{I}}{\overline{I}}\right)^{2} + \left(\frac{2\sigma_{d}}{\overline{d}}\right)^{2}} =$$

$$8,51 * 10^{-7} \sqrt{\left(\frac{0,00375}{0,225}\right)^2 + \left(\frac{0,00225}{0,4}\right)^2 + \left(\frac{0,0001}{0,231}\right)^2 + \left(\frac{2*0,0000133}{0,000387}\right)^2} = 6,038 \cdot 10^{-8} \text{ Om} \cdot \text{M}$$

Результаты измерения удельного сопротивления:

$$\rho_9 = \dot{\iota} \cdot 10^{-6} \text{ Om} \cdot \text{M}$$

$$\rho_9 = (0.85100 \pm 0.06038) \cdot 10^{-6} \, O_M \cdot M$$

Вывод:

В данной лабораторной работе мы измерили длину и диаметр проволоки при помощи штангенциркуля и микрометра

$$D_{\text{\tiny III}}\!\!=\!\!(0,\!3650\!\!\pm\!0,\!0076)^*10^{-3}\;\text{M}$$

$$D_{M}=(0.376\pm0.003)*10^{-3} M$$

Также мы посчитали удельное сопротивление проводника ρ = \dot{c})· 10^{-6} Om·м

Полученное значение удельного сопротивления с учетом погрешности соответствует нихрому.

Так как величина средней абсолютной погрешности прямых измерений диаметра проволки меньше точности используемого прибора, то за величину абсолютной ошибки была принята погрешность прибора.