Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный нефтяной технический университет» Кафедра «Вычислительная техника и инженерная кибернетика»

ОТЧЕТ

по лабораторной работе \mathbb{N}_2 1

ЗНАКОМСТВО С ЯЗЫКОМ С. ВЫПОЛНЕНИЕ ПРОГРАММ С ЛИНЕЙНОЙ ВЫЧИСЛИТЕЛЬНОЙ СТРУКТРУОЙ Вариант 6

Выполнил ст. гр. БПО-22-02	Гумеров Р.Р.
	————— подпись, дата
Проверил: преподаватель	Салихова М.А.
	 оценка, дата, подпис

Задание №1

1.1 Постановка задачи

Задание 1. Вычислить значение выражения при различных типах данных (int, float, double). Вычисления следует выполнять с использованием промежуточных переменных. Сравнить и объяснить полученные результаты.

1.2 Анализ задачи.

Решим задачу ручным способом, с помощью Excel

	Ручной подсчёт тип INT	
Переменные	Формула	Значение
a=		1
sigma=		0
y=	sin(x+a)*((1+(x+a)^2)/(sigma * sin(a)))	0
x=	In(a+(1/a))	0
	Ручной подсчёт тип Float	
Переменные	Формула	Значение
a=		1,45
sigma=		0,2
y=	sin(x+a)*((1+(x+a)^2)/(sigma * sin(a)))	23,78547813
x=	In(a+(1/a))	0,7606446817
	Ручной подсчёт тип Double	
Переменные	Формула	Значение
a=		1,45
sigma=		0,2
y=	sin(x+a)*((1+(x+a)^2)/(sigma * sin(a)))	23,78547813
x=	In(a+(1/a))	0.7606446817

Рисунок 1 – Скриншот ручного подсчёта в Excel

1.3 Алгоритм решения задачи

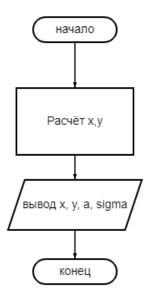


Рисунок 2 – схема алгоритма

1.3 Таблица переменных

Таблица 1 – Таблица переменных для алгоритма и программы

Смысл	Обозначения		Тип переменной	Примечания
переменных	в алгоритме	В		
		программе		
Исходные	sigma	dsig, da	double	Заданы
	a	fsig,fa	float	изначально
		isig,ia	int	
Промежуточные	X	dx	double	
		fx	float	
		ix	int	
Результаты	у	dy	double	
		fy	float	
		iy	int	

1.4 Текст программы на С++

```
#include <iostream>
#include <cmath>
using namespace std;
   //<u>Решение с</u> INT
   int iy, ix, ia, isig;
   isiq = 0.2;
   ia = 1.45;
   ix = log(ia + (1 / ia));
   iy = sin(ix + ia) * ((1 + pow(ix + ia, 2)) / (isig * sin(ia)));
   float fy, fx, fa, fsig;
   fsig = 0.2;
   fx = log(fa + (1 / fa));
   fy = sin(fx + fa) * ((1 + pow(fx + fa, 2)) / (fsig * sin(fa)));
   double dy, dx, da, dsig;
   dsig = 0.2;
   dx = log(da + (1 / da));
   dy = \sin(dx + da) * ((1 + pow(dx + da, 2)) / (dsig * sin(da)));
   return 0:
```

Рисунок 3 - Скриншот программы

1.4 Результаты

```
int---> x =0 a =1 y =-2147483648 sigma =0 float---> x =0.760645 a =1.45 y =23.7855 sigma =0.2 double---> x =0.760645 a =1.45 y =23.7855 sigma =0.2 Process returned 0 (0x0) execution time : 0.741 s Press any key to continue.
```

Рисунок 4 - Скриншот выполнения программы.

Задание №2

2.1 Постановка задачи

Написать программу вычисления значений выражений. Все необходимые для вычисления данные вводятся с клавиатуры. Объяснить полученные результаты. Сверить полученные результаты с ручным подсчетом.

```
c=d++-++e, e<<3
```

2.2 Анализ задачи

Решим задачу ручным способом:

```
Пусть c= 1, d=2,e=3:
d++=2
++e=3+1=4
d++-++e=-1
```

$$c=d++-++e=1-(-1)=2$$

Переводим 4 в двоичную систему счисления = 00000101

Делаем сдвиг влево на 3 бита = 00101000

Переводим число в десятичную систему счисления =32.

$$c=c-(d-32)=32$$

2.3 Алгоритм решения задачи

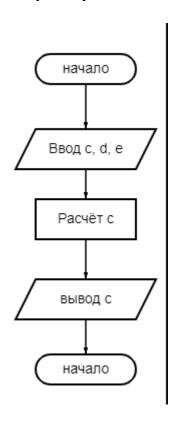


Рисунок 5 – Схема алгоритма задания 2

2.4 Таблица переменных

Таблица 2 – Таблица переменных для алгоритма и программы задания 2

в прогр.		
	c, d, e	

C

2.5 Текст программы на С++

```
#include <iostream>
using namespace std;
int main() {
  int c, d, e;
    cin >> c >> d >> e;
    cout << "d++ = " << d << endl;
    cout << "++e = " << ++e << endl;
    cout << "d++-++e = " << d - e << endl;
    cout << "c-=d++-++e = " << (c -= d - e) << endl;
    cout << "c-=d++-++e,e<<3 = " << (e << 3) << endl;
    return 0;
}</pre>
```

Рисунок 6 – Скриншот выполнения программы 2

2.6 Результат

```
1 2 3
d++ = 2
++e = 4
d++-++e = -2
c-=d++-++e = 3
c-=d++-++e,e<<3 = 32

Process returned 0 (0x0) execution time : 2.699 s
Press any key to continue.
```

Рисунок 7 – Скриншот выполнения программы 2

3.1 Постановка задачи

6. Определить скорость движения физической точки на ободе колеса, если известны радиус и частота вращения колеса.

3.2 Анализ задачи:

Решим задачу ручным способом и с помощью Excel

Пусть R=3, ти=30

	Ручной подсчёт	
Переменные	Формулы	Значение
w=	2*pi*mu	188,4
mu=		30
R=		3
v=	w*R	565,2

Рисунок 8 – Скриншот ручного подсчёта в Excel 3

3.3 Алгоритм решения задач:

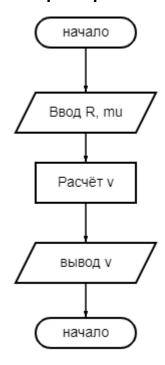


Рисунок 9 – Схема алгоритма задания 3

3.4 Таблица переменных:

Таблица 3 – Таблица переменных для алгоритма и программы задания 3

прогр.		
	R, mu	

3.5 Текст программы на С++

```
#include <iostream>
#include <cmath>
using namespace std;

int main() {

   float v, w, R, mu;
   cout<<"Vyedite radiuc zatem chastotu"<<endl;
   cin>>R>>mu;
   w=2 * 3.14 * mu;
   v=w*R;
   cout<<"Speed = "<<v;
   return 0;
}</pre>
```

Рисунок 10 - Скриншот программы 3

3.6 Результат

```
Vvedite radiuc zatem chastotu
3
30
Speed = 565.2
Process returned 0 (0x0) execution time : 8.635 s
Press any key to continue.
```

Рисунок 11 - Скриншот выполнения программы 3

Вывод:

В ходе лабораторной работы было выяснено, что если использовать дробные числа и положить их в переменную типа *int*, то компилятор отбросить дробную часть и возьмет только целую.

В других же случаях ответы из программ сходятся с ручным способом решения.