МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

ОТЧЕТ

Лабораторная работа 8 СОЗДАНИЕ КОМПЛЕКСНЫХ ПРОЕКТОВ НА БАЗЕ МАТLAB

Вариант 8

Студент гр. 9498

Тао Сяовэй

Преподаватель

Илатовская Екатерина Вадимовна.

Санкт-Петербург 2023 г.

Лабораторная работа 8 СОЗДАНИЕ КОМПЛЕКСНЫХ ПРОЕКТОВ НА БАЗЕ МАТLAB

Цель работы: получение навыков создания текстовых документов с помощью специального приложения MATLAB Notebook.

8.1. Основные сведения

Основной задачей приложения Notebook является обеспечение объединения возможностей текстового процессора класса Word возможностями математического пакета MATLAB. При помощи такого объединения возможно создание электронных книг, отчетов с различным текстовым оформлением и «живыми примерами». Это достигается путем включения в произвольные тексты документов действующих ячеек ввода и вывода, взаимосвязанных между собой так, что при изменении исходных значений в ячейках ввода могут изменяться и связанные с ними значения в ячейках вывода. Таким образом создается так называемая М-книга.

8.2. Программа работы

8.2.1. Создание документов класса Notebook

1. Для создания нового документа Notebook наберите **notebook** в командной строке MATLAB. При этом автоматически запустится Microsoft Word и откроется новая М-книга с именем Document 1. Опишем с помощью М-книги некоторые фракталы.

2. Введите заголовок документа (например, «Фракталы») и с красной строки определение фрактала: «Фрактал — это сложная геометрическая фигура, обладающая свойством самоподобия, т. е. составленная из нескольких частей, каждая из которых подобна всей фигуре целиком». И далее: «В качестве иллюстрации рассмотрим следующие фракталы:

No	Фрактал	$N_{\underline{0}}$	Фрактал
п./п		п./п.	
1	Дракон Хартера–Хайтвея	7	Куст
2	Ковер Серпинского	8	Остров
3	Кривая Гильберта	9	Снежинка Коха
4	Кривая Госпера	10	Сорняк
5	Кривая Пеано	11	Цветок
6	Кривая Серпинского		_

Таблица 1

- 3. Создайте ячейку ввода. Для этого введите с новой строки N= 3. Затем выделите этот текст и исполните команду меню Notebook \setminus Define Input Cell. В результате проделанных действий текст автоматически заключается в квадратные скобки.
- 4. Создадим еще одну ячейку ввода с командой вызова функции построения фракталов **Lsystem**(*N*). Выделите набранную команду и

снова примените процедуру Define Input Cell. Автоматически сгенерируется ячейка вывода – изображение фрактала.

- 5. Можно изменить ячейку ввода, задав новый номер *N* фрактала. После этого необходимо вызвать контекстное меню и обновить всю М-книгу командой **Evaluate M-book**. Таким образом, можно просмотреть все 11 представленных фракталов. При изменении ячейки ввода ячейка вывода обновляется автоматически.
 - 6. Сохраните созданную M-книгу в формате *.doc.

8.2.2. Задание на самостоятельную работу

Создайте М-книгу, иллюстрирующую основные возможности дескрипторной графики математического пакета MATLAB.

8.3. Содержание отчета

Отчет должен содержать цель лабораторной работы, краткое описание расширения Notebook MATLAB, две созданные в результате работы M - книги.


•

Остров

Порождающее правило	Изображения фрактала		
Аксиома: F+F+F+F		Число	
F→F+F-F-FFF+F+F-F		итераций: 2	
$\theta = \pi/2$			
α=0			
	T 25		
	20/23 r.		

Обозначения порождающего правила:

- F переместиться вперед на один шаг, прорисовывая след ($x\!=\!x_0\!+\!\cos(\alpha)\,,\,y\!=\!y_0\!+\!\sin{(\alpha)}\,\dot{\zeta}^{;}$
- b переместиться вперед на один шаг, НЕ прорисовывая след;
- + увеличить угол α на величину θ ;
- - уменьшить угол α на величину θ ;
- [открыть ветвь. Сохранить координаты (x, y, α) в конце стека;
-] закрыть ветвь. Присвоить переменным (x, y, α) значения, считанные из конце стека, после чего удалить их из стека;
- X и Y вспомогательные переменные, которые должны игнорироваться графикой.

Поскольку M-book не может быть открыт, используйте вместо него LIVE EDITOR

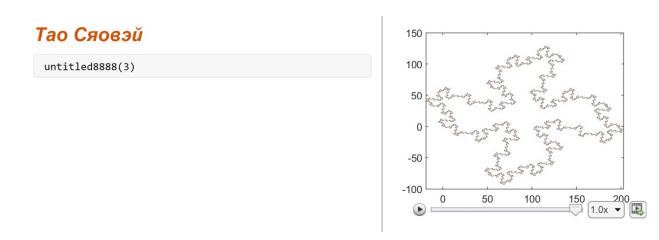


Рис 2 Результаты LIVE EDITOR

Вывод: научитесь создавать сложные изображения и запускать их с помощью Создание документов класса Notebook, которые можно использовать на практике