Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий
и анализа данных
наименование института
Кафедра вычислительной техники
наименование кафелры

Отчет

к лабораторной работе №6.2 по дисциплине «Физика» «Изучение законов внешнего фотоэффекта»

наименование темы

Вариант №56

Выполнил студент	ЭВМб-19-1		
·	шифр	подпись	Фамилия И.О.
Проверил			
1 1	должность	подпись	Фамилия И.О.
Работа защищена с о	ценкой		

Цель работы:

Изучение явления внешнего фотоэлектрического эффекта на виртуальной лабораторной установке, экспериментальное подтверждение закономерностей внешнего фотоэффекта.

Контрольные вопросы

1. Что такое фотон?

ФОТОН - Частица света, квант электромагнитного поля (одна из нейтральных элементарных частиц с нулевой массой).

2. Как определяется энергия фотона?

Энергия фотона находится по формуле:

$$E_{\phi} = h v$$

где h – постоянная Планка, приблизительно равная $6,63*10^{-34}$ Дж *c, *v* – частота электромагнитных колебаний.

3. Формула, связывающая энергию фотона и его массу.

Энергия фотона связана с его импульсом следующей формулой:

$$E_{\phi}=m_{\phi}c^2$$

где m_{ϕ} – инертная масса фотона, c – скорость света, равная $3*10^8 \, \text{м/c}$.

4. Формула, связывающая энергию фотона с его импульсом.

Энергия фотона связана с его импульсом следующей формулой:

$$E_{\phi} = c\sqrt{p_{\phi}^2 + m_0^2 c^2},$$

 $E_\phi\!=\!c\,\sqrt{\,p_\phi^2\!+\!m_0^2\,c^2},$ где m_0 – масса покоя фотона, p_ϕ – импульс фотона.

5. Дайте формулировку явления внешнего фотоэффекта.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения.

Внешний фотоэффект наблюдается в твёрдых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах

6. Что происходит с фотоном, падающим на границу металла?

Фотон, падающий на границу металла, поглощается свободным электроном, отдавая ему всю свою энергию.

Что происходит со свободным электроном металла, после его взаимодействия с фотоном?

Кинетическая энергия электрона внутри вещества увеличивается на энергию фотона hv, но при вылете фотоэлектрона из вещества им совершается работа выхода $A_{\text{вых}}$ против сил электростатического притяжения к металлу.

Таким образом, сообщённая электрону фотоном дополнительная энергия уменьшается на величину, равную работе выхода из металла (фотокатода), а оставшаяся часть имеет вид кинетической энергии фотоэлектрона вне металла (фотокатода).

8. Что такое работа выхода?

Работа выхода — энергия (обычно измеряемой в электрон-вольтах), которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела.

9. Формула Эйнштейна для внешнего фотоэффекта.

$$h v = A_{\text{вых}} + \frac{m u^2}{2},$$

где u – скорость фотоэлектрона, $A_{\text{вых}}$ – работа выхода.

10. Дайте определение красной границы фотоэффекта.

Красная граница фотоэффекта — это минимальная частота или максимальная длина волны света излучения, при которой ещё возможен внешний фотоэффект.

11. Что такое фотоэлемент?

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию.

12. Почему катод фотоэлемента называют фотокатодом?

Фотокатод - отрицательно заряженный электрод (катод) в светочувствительных устройствах, работающих с использованием внешнего фотоэффекта.

Катод фотоэлемента называют фотокатодом, поскольку он облучается светом (электромагнитным излучением определенного диапазона длин волн) и на нем наблюдается фотоэффект.

13. Что такое запирающее напряжение для данного фотокатода?

Запирающее (задерживающее) напряжение - минимальное тормозящее напряжение между анодом вакуумной лампы (фотоэлемента) и фотокатодом, при котором отсутствует ток в цепи этой лампы, то есть фотоэлектроны не долетают до анода.

При таком напряжении кинетическая энергия электронов у катода равна потенциальной энергии электронов у анода, откуда следует выражение:

$$\frac{m u_{max}^2}{2} = e U_{3an},$$

где U_{3an} – запирающее (задерживающее) напряжение, u_{max} – максимальная скорость фотоэлектрона, e – заряд электрона, приблизительно равный $1.6*10^{-19} K_{\pi}$.

14. Как движется фотоэлектрон в фотоэлементе, если потенциал анода ниже (или выше) потенциала фотокатода?

При потенциале анода ниже потенциала фотокатода фотоэлектрон тормозится электрическим полем и может возвратиться на фотокатод.

При потенциале анода выше потенциала фотокатода фотоэлектрон ускоряется электрическим полем, попадает на анод и поглощается им.

Оформление результатов наблюдений

r = 8, 25 см— расстояние от источника света до фотокатода. λ_{min} =320 нм=3, 2*10⁻⁷ м - минимальная длина волны источника света.

Работа выхола электнонов из металла

гаоота выхода электронов из металла										
Металл	А, Дж	А, эВ								
Платина	10*10-19	6,3								
Серебро	7,5*10 ⁻¹⁹	4,7								
Цинк	6,4*10 ⁻¹⁹	4,0								
Литий	3,7*10 ⁻¹⁹	2,3								
Калий	3,5*10 ⁻¹⁹	2,2								
Рубидий	3,4*10 ⁻¹⁹	2,1								
Цезий	3,2*10 ⁻¹⁹	2,0								

1) Первое вещество (№3).

	00 20		20 (01-0	<i>'</i>									
№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13
Потенц. U, В	$U_{\scriptscriptstyle 3an}$	-2,0	-1,5	-1,0	-0,5	0	0,5	1,0	1,5	2,0	2,5	3,0	$U_{{\scriptscriptstyle \it Hac}}$
Фототок	0	0	0,042	0,1	0,158	0,221	0,286	0,349	0,411	0,473	0,535	0,596	0,596
I, MA													

 $U_{_{\it 3an}}$ = -1 , 8B — Запирающее напряжение. $U_{_{\it Hac}}$ = 3 , 0B — Напряжение, при котором фототок принимает максимальное значение

$$A_{\text{вых}} = \frac{hc}{\lambda_{\min}} - e U_{\text{зап}} = \frac{6,63 * 10^{-34} * 3 * 10^{8}}{3,2 * 10^{-7}} - 1,6 * 10^{-19} * 1,8 \approx 3,3 * 10^{-19} \text{Дж} \approx 2,06 \text{ эВ},$$
вещество — рубидий.)

График зависимости I(U) – Вещество №3

2) Второе вещество (№1)

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13
Потенц. U, В	$U_{\scriptscriptstyle \it 3an}$	-2,0	-1,5	-1,0	-0,5	0	0,5	1,0	1,5	2,0	2,5	3,0	$U_{{\scriptscriptstyle \it Hac}}$
Фототок	0	0	0,023	0,089	0,156	0,217	0,276	0,341	0,406	0,47	0,533	0,596	0,596
I, MA													

 $U_{\text{\tiny 3an}} = -1$, 7 B - 3апирающее напряжение.

 $U_{\rm {\it hac}} = 3.0\,{\it B}$ - Напряжение, при котором фототок принимает максимальное значение.

$$A_{\scriptscriptstyle GbLX} = \frac{hc}{\lambda_{\scriptscriptstyle min}} - e\ U_{\scriptscriptstyle 3an} = \frac{6,63*10^{-34}*3*10^8}{3,2*10^{-7}} - 1,6*10^{-19}*1,7\!pprox\!3,5*10^{-19}\ \mathcal{Д}$$
же \approx 2,18 эВ ,(1-е вещество — Калий.)

График зависимости I(U) – Вещество №1

Вывод по работе:

Полученные графики совпадают с теоретическим графиком с некоторой погрешностью.

Из данных графиков, показывающих зависимость фототока I от напряжения $U_{\text{зап}}$, видно, что:

- 1. При U=0 фототок не исчезает, т.к. электроны, выбитые из фотокатода, обладают некоторой отличной от нуля начальной кинетической энергией и могут достичь анода и без внешнего поля.
- 2. Для прекращения фототока необходимо приложить задерживающее напряжение $U_{\text{зап}}$, при котором не один из электронов не может достичь анода.
 - 3. С увеличением напряжения U на фотокатоде возрастает и фототок I;

Следовательно, сила фототока насыщения прямо пропорциональна интенсивности светового излучения, что подтверждает законы Столетова.