Специальность 090203 «Программное обеспечение вычислительной техники и автоматизированных систем»

Отчет По практическому занятию №2 Дисциплина: МДК 01.01 Системное программирование

Выполнил студент 3 курса	_ группы
	(Ф.И.Ф)
Принял	
<u>Дата сдачи</u> <u>Оценка</u>	
Оценка	

Применяемые в assembler системы счисления. Выполнение взаимных переводов из одной системы счисления в другую. Выполнение сложения и вычитания в 16-ной системе счисления.

Часть 1. Применяемые в assembler системы счисления. Выполнение взаимных переводов из одной системы счисления в другую

Система счисления — это способ представления (записи) любого числа с помощью определенного количества символов (цифр). Основание системы счисления — это и есть количество разных символов (цифр) используемое для записи чисел в этой системе.

Двоичная система счисления — это система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов (0 и 1).

Десятичная система счисления — это система счисления с основанием 10. В этой системе счисления числа записываются с помощью десяти символов (0;1;2;3;4;5;6;7;8;9).

Шестнадцатеричная система счисления — это система счисления по основанию 16. В этой системе счисления числа записываются с помощью десятичных цифр от 0 до 9 и латинских буквы от A до F, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Двоичная система применяется в цифровой техники, т.к. удобно цифры 0 и 1 обозначить двумя уровнями напряжения (обычно 0...0,8 В и 2...5 В). Их соответственно называют:

0 – низкий уровень, 1 – высокий уровень.

Десятичная система удобно для человеческого восприятия и более привычна.

Шестнадцатеричная система широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-

битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.

Обозначение

Двоичная – bin (B)

Десятичная - dec(D)

Шестнадцатеричная – hex (H)

Основание системы счисления в математике принято указывать в нижнем индексе.

Представление отрицательных чисел в компьютере

Чтобы записать отрицательное число нужно:

- 1) инвертировать биты числа, т.е. нули заменить единицами, а единицы нулями;
 - 2) к полученному числу прибавить единицу.

Пример. Дано двоичное число 01101010, его десятичное представление равно 106. Получим из него отрицательное число, для этого

- 1) инвертируем исходное число: 01101010 > 10010101
- т.е. нули заменены единицами, а единицы нулями.
- далее к полученному числу добавляем единицу: 10010101 + 00000001 = 10010110

Получили отрицательное представление исходного двоичного числа, обратите внимание, что старший бит, крайний слева, 10010110, равен единице, а это говорит, что число отрицательное.

Для нахождения модуля полученного отрицательного числа также нужно инвертировать биты и добавить единицу.

- 1) инвертируем: 10010110 > 01101001
- 2) добавляем единицу: 01101001 + 0000001 = 01101010

Получили модуль числа 10010110. Обратите внимание, что старший бит модуля 01101010 равен нулю, а это говорит, что число положительное.

Задание 1: Как будут представлены в компьютере следующие числа: 19 и -19.

19	-19
1=1	-9=0001
9=1000	-1=1
11000	00011

Задание 2: Как будут представлены в десятичном виде числа, представленные в компьютере следующим образом: 11101010, 00001011

11101010	00001011
16+12	0+13
28	13

Задание 3: для своего варианта преобразуйте три числа в двоичной системе в десятичную.

	Числа, которые необходимо представить в десятичном				
№	виде				
варианта	1 двоичное число	2-е двоичное	3-е двоичное		
	т двой шос тело	число	число		
2	11110110	01011110	11101110		
	17+0+6	0+5+16	16+16		
	23	21	32		

Задания для самопроверки

1. Что называется системой счисления?

Система счисления — это способ представления (записи) любого числа с помощью определенного количества символов (цифр). Основание системы счисления — это и есть количество разных символов (цифр) используемое для записи чисел в этой системе.

2. Какие в Ассемблере самые популярные системы счисления?

Двоичная – bin (B)

Десятичная - dec(D)

Шестнадцатеричная – hex (H)

3. Как отличить среди двоичных чисел какие положительные, а какие отрицательные?

Получили отрицательное представление исходного двоичного числа, обратите внимание, что старший бит, крайний слева, 10010110, равен единице, а это говорит, что число отрицательное.

Обратите внимание, что старший бит модуля 01101010 равен нулю, а это говорит, что число положительное.

Часть 2. Выполнение сложения и вычитания в 16-ной системе счисления

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления — это позиционная система счисления с основанием 16. Для записи чисел в **шестнадцатеричной системе** используется 10 цифр от нуля до девяти (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) и латинские буквы A, B, C, D, E, F, обозначающие числа от 10 до 15.

Таким образом, все символы шестнадцатеричной системы:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ В ВОСЬМЕТИЧНОЙ И ШЕСТНАДЦАТИРИЧНОЙ СИСТЕМЕ

Сложение и вычитание в 8-ной и 16-ной системах счисления

При выполнении действий сложения и вычитания в 8-ной системе счисления необходимо помнить: в записи результатов сложения и вычитания могут быть использованы только цифры восьмеричного алфавита; основание восьмеричной системы счисления равен 8, т.е. переполнение наступает, когда результат сложения больше или равен 8. В этом случае для записи результата надо вычесть 8, записать остаток, а к старшему разряду прибавить единицу переполнения; если при вычитании приходится занимать единицу в старшем разряде, эта единица переносится в младший разряд в виде 8 единиц. Примеры.

Сложить восьмеричные числа 7708 и 2368.

Задание 1: выполнить действия в восьмеричной системе счисления. $715_8 + 373_8$ $524_8 + 57_8$

Выполнить вычитание восьмеричных чисел 7508 и 2368.

Задание 2: выполнить действия в восьмеричной системе счисления. $137_8\text{-}72,3_8$ $436_8\text{-}257_8$

	111	1 1		
-	4	3	6	
	2	5	7	
	5	0	0	

При выполнении действий сложения и вычитания в 16-ной системе счисления необходимо помнить: в записи результатов сложения и вычитания могут быть использованы только цифры шестнадцатеричного алфавита (0-9, A-F).

Основание шестнадцатеричной системы счисления равно 16, т.е. переполнение наступает, когда результат сложения больше или равен 16. В этом случае для записи результата надо вычесть 16, записать остаток, а к старшему разряду прибавить единицу переполнения; если при вычитании приходится занимать единицу в старшем разряде, эта единица переносится в младший разряд в виде 16 единии.

Примеры.

Сложить шестнадцатеричные числа $B09_{16}$ и EFA_{16}

Задание 3: выполнить действия в шестнадцатеричной системе счисления. $A13_{16}+1CF_{16}$

 $F0B_{16} + 1DA_{16}$

Выполнить вычитание шестнадцатеричных чисел $B09_{16}$ и $7FA_{16}$.

$$-\begin{array}{cccc} 10 & 15 & 16 \\ B & 0 & 9 \\ \hline 7 & F & A \\ \hline 3 & 0 & F \end{array}$$

Задание 4: выполнить действия в шестнадцатеричной системе счисления. $A13_{16}\text{-}1CF_{16}$ DFA,B8 $_{16}$ - 1AE,94 $_{16}$

Вывод: Провели применяемые в assembler системы счисления. Выполнении взаимных переводов из одной системы счисления в другую.