

Российский

государственный социальный

университет

ИТОГОВОЕ ПРАКТИЧЕСКОЕ ЗАДАНИЕ

по дисциплине «Безопасность жизнедеятельности»

Метод определения возможности возникновения аварийного состояния

(тема практического задания)

ФИО студента	Камолов Дилшод Бахтиёрович			
Направление	Информационные технологии			
подготовки				
Группа				

Задача 1. Вариант № 8

Задание 1: Составление паспорта опасности. Вариант № 14.

Варианты заданий

T+	Емкости I		Емкости II		Трубопроводы	
Вариант	Количест во	Средний срок службы, лет	Количест во	Средний срок службы, лет	Длина, пог.м	Средний срок службы, лет/пог.м
8	18	85	21	100	140	190

Решение.

1)Определяем параметр потока отказов в целом цехе по уравнению:

2)Для времени τ = 0,5 года вероятность $p_o(\tau)$ безаварийной работы составить

$$p_0(\tau) = e^{\frac{-\tau}{T}} = e^{\frac{-0.5 \cdot 3064}{3230}} = 0.948$$

3) Определяем вероятность того, что выход газа произойдет из m-й группы оборудования, по уравнению:

$$B_{m_1} = \frac{n_1 \Lambda_1}{n_1 \Lambda_1 + n_2 \Lambda_2 + n_3 \Lambda_3} = \frac{18 * 0, 2}{18 * 0, 2 + 21 * 0, 2 + 140 * 0, 5} \approx 0,046,$$

Составить паспорт опасности (в табличной форме) в соответствии с выданным заданием.

1. Внимательн	о изучите	классифи	кации	опасн	юстей.		
2.	Дайте	характеристи	іку	опас	сности		
3. По предло	эженным заданиям	и идентифициру	йте оп	асности и сос	тавьте		
паспорт				опас	ности.		
4.	Подготовьте				отчет.		
5. Шаблон	для составления	паспорт опасн	остей	представлен	после		
вариантов				3a,	даний.		
Номер вариа	<u>анта:</u> 14						
Ситуационная задача: Паспорт опасности в разряде атмосфере.							
Признак		Ві	ід (кл	acc)			

Первая группа. Свойства опасностей

Происхождение Естественное

Физическая природа потока Энергетическое

Интенсивность потока

Чрезвычайно опасно

Длительность воздействия

Кратковременная

Зона воздействия

Городская, природная

Размеры зоны воздействия

Локальная

Степень

завершенности Реальная

воздействия

Вторая группа. Свойства объекта защиты

Способность различать (идентифицировать) Различаемая опасности человеком

Вид негативного воздействия опасности Травмоопасная

Масштаб воздействия (по численности лиц, Индивидуальный подверженных воздействию опасности)

Грозовой разряд - электрический искровой разряд в атмосфере, происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом.

Молния — это электрический искровой разряд в атмосфере, проявляющийся яркой вспышкой света.

Источники возникновения опасности.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — молния облако-земля. Для возникновения молнии необходимо, чтобы в малом (но не меньше некоторого критического) объёме

облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (0,1—0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Воздействия опасности на здоровье человека и среду обитания.

Попадание молнии в человека может привести к быстрому летальному исходу. При ударе молнии в организме человека вырабатывается тепловая энергия, образуя многочисленные ожоги, происходит поражение нервной системы, остановка дыхания и сердцебиения.

Гроза часто становится виновной в авиационных катастрофах, создает замыкание в электросети, вызывает пожары, грозит сбоем работы электронного оборудования.

Меры и методы защиты.

Большинство гроз обычно происходят без каких-либо существенных последствий, тем не менее, необходимо соблюдать ряд правил безопасности:

Следить за движением грозового облака, оценивая расстояния для места грозовой активности по времени запаздывания грома относительно молнии. Если расстояние уменьшается до 3 километров (запаздывание менее 10 секунд) значит существует риск близкого удара молнии и необходимо незамедлительно принять меры по защите себя и имущества.

На открытой местности (степь, тундра, большие пляжи) необходимо по возможности переместиться в пониженные места (овраги, балки, складки местности), но не приближаться при этом к водоему.

В лесу следует переместиться на участок с невысокими молодыми деревьями.

В населенном пункте, по возможности — укрыться в помещении.

В горах следует искать укрытие в распадках, расщелинах (однако надо учитывать возможность возникновения в них склонового стока при сильном ливне, сопровождающем грозу) под устойчивыми нависающими камнями, в пещерах.

При движении на автомобиле следует остановиться (если это позволяет дорожная ситуация и не запрещено правилами), закрыть окна, выключить двигатель. Движение во время близкой грозы очень опасно, поскольку водитель может быть ослеплен яркой вспышкой близкого разряда, а электронные устройства управления современного автомобиля — дать сбой.

При нахождении на водоеме (река, озеро) на лодках, плотах, байдарках необходимо как можно скорее направляться к берегу, острову, косе или дамбе. Находиться в воде во время грозы очень опасно, поэтому нужно выйти на берег.

Находясь в помещении следует закрыть окна и отойти от них на расстояние хотя бы 1 метр, прекратить телевизионный и радиоприем на

внешнюю антенну, <u>отключить электронные приборы</u>, питаемые от сети.

•

Очень опасно во время грозы находиться возле следующих объектов: отдельно стоящие деревья, опоры линии электропередач, освещения, связи и контактной сети, флагштоки, различные архитектурные столбы, колонны, водонапорные башни, электрические подстанции (здесь дополнительную опасность создает разряд между токоведущими шинами, который может быть инициирован ионизацией воздуха грозовым разрядом), крыши и балконы верхних этажей, возвышающихся над городской застройкой зданий.

•

Достаточно безопасными и пригодными для укрытия местами являются: водопропускные трубы автомобильных и железных дорог (являются также и неплохой защитой и от дождя), места под пролетными строениями мостов, путепроводов, эстакад, навесы автозаправочных станций.

•

Достаточно надежной защитой от молнии может служить любое закрытое транспортное средство (автомобиль, автобус, железнодорожный вагон). Однако транспортных средств с тентовой крышей стоит остерегаться.

•

Если гроза застигла в месте, где нет никаких укрытий, <u>следует сесть на корточки</u>, снизив таким образом свою высоту над уровнем земли, но ни в коем случае не ложиться на землю и не опираться руками (чтобы не попасть под действие шагового напряжения), накрыть голову и лицо любым подручным укрытием (капюшон, пакет и т. п.), чтобы защитить их от ожога ультрафиолетовым излучением от возможного близкого

разряда. Велосипедистам и мотоциклистам следует отойти от своей техники на расстояние 10–15 м.

Наряду с молнией в эпицентре грозовой активности опасность представляют также нисходящий поток воздуха, создающий порывы шквалистого ветра и интенсивные осадки, в том числе — град, от которых тоже требуется защита.

Грозовой фронт проходит достаточно быстро, поэтому особые меры безопасности требуются в течение сравнительно небольшого интервала времени, в умеренном климате обычно не более 3–5 минут.

Вывод

Грозовой разряд - очень опасное природное явление, которое может повлечь за собой человеческие смерти, разрушения инфраструктуры и пожары. Гроза относится к быстротекущим, бурным явлением. Предотвратить ее развитие невозможно.