

Содержание:

Введение

История развития компьютерных сетей достаточно сложна; за прошедшие 35 лет в этом процессе приняли участие многие специалисты и пользователи сетей. Процесс создания и коммерческого применения новых типов сетей был значительно более сложным, в этой заметке отмечены лишь основные этапы.

Развитие компьютерных сетей сопряжено с развитием вычислительной техники и телекоммуникаций. Компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Эволюция компьютерных сетей на стыке вычислительной техники и телекоммуникационных технологий

Хронология важнейших событий из истории развития компьютерных сетей:

Этап	Время
Первые глобальные связи компьютеров, первые эксперименты с пакетными сетями	Конец 60-х
Начало передач по телефонным сетям голоса в цифровой форме	Конец 60-х
Появление больших интегральных схем, первые мини-компьютеры, первые нестандартные локальные сети	Начало 70-х
Создание сетевой архитектуры IBM SNA	1974
Стандартизация технологии Х.25	1974
Появление персональных компьютеров, создание Интернета в современном виде, установка на всех узлах стека TCP/IP	Начало 80-х
Появление стандартных технологий локальных сетей (Ethernet — 1980 г., Token Ring, FDDI — 1985 г.)	Середина 80-х
Начало коммерческого использования Интернета	Конец 80-х
Изобретение Web	1991

Системы пакетной обработки

Обратимся сначала к компьютерному корню вычислительных сетей. Первые компьютеры 50-х годов — большие, громоздкие и дорогие — предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а применялись в режиме пакетной обработки.

Системы пакетной обработки, как правило, строились на базе мэйнфрейма — мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр (см. рис. ниже). Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Таким образом, одна неверно набитая карта означала как минимум суточную задержку. Конечно, для пользователей интерактивный режим работы, при котором можно с терминала оперативно руководить процессом обработки своих данных, был бы удобней. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали. Во главу угла ставилась эффективность работы самого дорогого устройства вычислительной машины — процессора, даже в ущерб эффективности работы использующих его специалистов.

Централизованная система на базе мэйнфрейма

Многотерминальные системы — прообраз сети

По мере удешевления процессоров в начале 60-х годов появились новые способы организации вычислительного процесса, которые позволили учесть интересы пользователей. Начали развиваться интерактивные многотерминальные системы разделения времени. В таких системах каждый пользователь получал собственный терминал, с помощью которого он мог вести диалог с компьютером. Количество одновременно работающих с компьютером пользователей определялось его мощностью: время реакции вычислительной системы должно было быть достаточно мало, чтобы пользователю была не слишком заметна параллельная работа с компьютером других пользователей.

Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. И хотя вычислительная мощность оставалась полностью централизованной, некоторые функции, такие как ввод и вывод данных, стали распределенными. Подобные многотерминальные централизованные системы внешне уже были очень похожи на локальные вычислительные сети. Действительно, рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас он воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него

поддерживалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат. (Некоторые далекие от вычислительной техники пользователи даже были уверены, что все вычисления выполняются внутри их дисплея.)

Многотерминальная система — прообраз вычислительной сети

Многотерминальные системы, работающие в режиме разделения времени, стали первым шагом на пути создания локальных вычислительных сетей.

Однако до появления локальных сетей нужно было пройти еще большой путь, так как многотерминальные системы, хотя и имели внешние черты распределенных систем, все еще поддерживали централизованную обработку данных.

К тому же потребность предприятий в создании локальных сетей в это время еще не созрела — в одном здании просто нечего было объединять в сеть, так как из-за высокой стоимости вычислительной техники предприятия не могли себе позволить роскошь приобретения нескольких компьютеров. В этот период был справедлив так называемый закон Гроша, который эмпирически отражал уровень технологии того времени. В соответствии с этим законом производительность компьютера была пропорциональна квадрату его стоимости, отсюда следовало, что за одну и ту же сумму было выгоднее купить одну мощную машину, чем две менее мощных — их суммарная мощность оказывалась намного ниже мощности дорогой машины.

Первые глобальные компьютерные сети

А вот потребность в соединении компьютеров, находящихся на большом расстоянии друг от друга, к этому времени уже вполне назрела. Началось все с решения более простой задачи — доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных суперкомпьютеров. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер.

Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым признаком любой вычислительной

сети.

На основе подобного механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие ставшие теперь традиционными сетевые службы.

Итак, хронологически первыми появились **глобальные сети (Wide Area Network, WAN)**, то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах.

Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи, лежащие в основе современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, концепции коммутации и маршрутизации пакетов.

Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей — телефонных. Главное технологическое новшество, которое привнесли с собой первые глобальные компьютерные сети, состоял в отказе от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях.

Выделяемый на все время сеанса связи составной телефонный канал, передающий информацию с постоянной скоростью, не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, работающими по принципу коммутации пакетов, когда данные разделяются на небольшие порции — пакеты, — которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета.

Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобитов в секунду), набор предоставляемых услуг в глобальных сетях

такого типа обычно ограничивался передачей файлов (преимущественно в фоновом режиме) и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток — они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных. Типичным примером таких сетей являются сети X.25, разработанные еще в начале 70-х, когда низкоскоростные аналоговые каналы, арендуемые у телефонных компаний, были преобладающим типом каналов, соединяющих компьютеры и коммутаторы глобальной вычислительной сети.

В 1969 году министерство обороны США инициировало работы по объединению в единую сеть суперкомпьютеров оборонных и научно-исследовательских центров. Эта сеть, получившая название ARPANET, стала отправной точкой для создания первой и самой известной ныне глобальной сети — **Интернет**.

Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных операционных систем (ОС) с дополнительными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров сети. ОС этих компьютеров можно считать *первыми* сетевыми операционными системами.

Истинно сетевые ОС в отличие от многотерминальных ОС позволяли не только рассредоточить пользователей, но и организовать распределенные хранение и обработку данных между несколькими компьютерами, связанными электрическими связями. Любая сетевая операционная система, с одной стороны, выполняет все функции локальной операционной системы, а с другой стороны, обладает некоторыми дополнительными средствами, позволяющими ей взаимодействовать через сеть с операционными системами других компьютеров. Программные модули, реализующие сетевые функции, появлялись в операционных системах постепенно, по мере развития сетевых технологий, аппаратной базы компьютеров и возникновения новых задач, требующих сетевой обработки.

Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей.

С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме.

Это привело к появлению высокоскоростных цифровых каналов, соединяющих автоматические телефонные станции (АТС) и позволяющих одновременно передавать десятки и сотни разговоров.

К настоящему времени глобальные сети по разнообразию и качеству предоставляемых услуг догнали локальные сети, которые долгое время лидировали в этом отношении, хотя и появились на свет значительно позже.

Первые локальные компьютерные сети

Важное событие, повлиявшее на эволюцию компьютерных сетей, произошло в начале 70-х годов. В результате технологического прорыва в области производства компьютерных компонентов появились большие интегральные схемы (БИС). Их сравнительно невысокая стоимость и хорошие функциональные возможности привели к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов. Эмпирический закон Гроша перестал соответствовать действительности, так как десяток мини-компьютеров, имея ту же стоимость, что и мэйнфрейм, решали некоторые задачи (как правило, хорошо распараллеливаемые) быстрее.

Даже небольшие подразделения предприятий получили возможность иметь собственные компьютеры. Мини-компьютеры решали задачи управления технологическим оборудованием, складом и другие задачи уровня отдела предприятия. Таким образом, появилась концепция распределения компьютерных ресурсов по всему предприятию. Однако при этом все компьютеры одной организации по-прежнему продолжали работать автономно:

Автономное использование нескольких мини-компьютеров на одном предприятии

Шло время, и потребности пользователей вычислительной техники росли. Их уже не удовлетворяла изолированная работа на собственном компьютере, им хотелось в автоматическом режиме обмениваться компьютерными данными с пользователями других подразделений. Ответом на эту потребность стало появление первых локальных вычислительных сетей.

Различные типы связей в первых локальных сетях

Локальные сети (Local Area Network, LAN) — это объединения компьютеров, сосредоточенных на небольшой территории, обычно в радиусе не более 1-2 км,

хотя в отдельных случаях локальная сеть может иметь и большие размеры, например несколько десятков километров. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую одной организации.

На первых порах для соединения компьютеров друг с другом использовались нестандартные сетевые технологии. Это вызывало много проблем свзязанных с несовместимостью сетевого оборудования.

Сетевая технология — это согласованный набор программных и аппаратных средств (например, драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.

Разнообразные устройства сопряжения, использующие собственные способы представления данных на линиях связи, свои типы кабелей и т. п., могли соединять только те конкретные модели компьютеров, для которых были разработаны, например, мини-компьютеры PDP-11 с мэйнфреймом IBM 360 или мини-компьютеры HP с микрокомпьютерами LSI-11. Такая ситуация создала большой простор для творчества студентов — названия многих курсовых и дипломных проектов начинались тогда со слов «Устройство сопряжения...».

В середине 80-х годов положение дел в локальных сетях кардинально изменилось. Утвердились **стандартные сетевые технологии** объединения компьютеров в сеть Ethernet, Arcnet, Token Ring, Token Bus, несколько позже — FDDI.

Мощным стимулом для их появления послужили **персональные компьютеры**. Эти массовые продукты стали идеальными элементами построения сетей — с одной стороны, они были достаточно мощными, чтобы обеспечивать работу сетевого программного обеспечения, а с другой — явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Все стандартные технологии локальных сетей опирались на тот же принцип коммутации, который был с успехом опробован и доказал свои преимущества при передаче трафика данных в глобальных компьютерных сетях, — **принцип**

коммутации пакетов.

Стандартные сетевые технологии превратили процесс построения локальной сети из решения нетривиальной технической проблемы в рутинную работу. Для создания сети достаточно было приобрести стандартный кабель, сетевые адаптеры соответствующего стандарта, например Ethernet, вставить адаптеры в компьютеры, присоединить их к кабелю стандартными разъемами и установить на компьютеры одну из популярных сетевых операционных систем, например Novell NetWare.

Разработчики локальных сетей привнесли много нового в организацию работы пользователей. Так, стало намного проще и удобнее, чем в глобальных сетях, получать доступ к общим сетевым ресурсам. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей, освобожденных от необходимости изучать специальные (и достаточно сложные) команды для сетевой работы.

Заключение

Конец 90-х выявил явного лидера среди технологий локальных сетей — семейство Ethernet, в которое вошли классическая технология Ethernet со скоростью передачи 10 Мбит/с, а также Fast Ethernet со скоростью 100 Мбит/с и Gigabit Ethernet со скоростью 1000 Мбит/с.

Простые алгоритмы работы предопределяют низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, выбирая ту технологию семейства, которая в наибольшей степени отвечает задачам предприятия и потребностям пользователей. Важно также, что все технологии Ethernet очень близки друг к другу по принципам работы, что упрощает обслуживание и интеграцию этих сетей.