МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационно-измерительных систем и технологий

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Метрология»

Тема: ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

	Терентьев Е.А.
	Хлебникова Е.А
Студенты гр. 0203	Визорный А.С.
T.	
Преподаватель	Микус О.А.

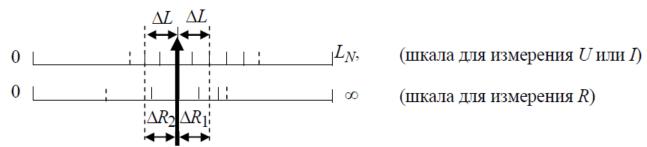
Санкт-Петербург 2021

Цель работы.

Изучение средств и методов измерения параметров электрических цепей; оценка результатов и погрешностей измерений.

Основные теоретические положения.

Объекты измерений – резисторы и используемые средства измерений указываются преподавателем.


Измерение сопротивлений проводится по методике, представленной в инструкциях пользователя соответствующих приборов. Результаты измерений должны быть представлены в виде:

$$R_x = R_{nn} \pm \Delta R$$

где R_{np} — сопротивление измеряемого резистора, определяемое по шкале прибора; ΔR — абсолютная погрешность измерения сопротивления.

Погрешности результатов измерений определяются непосредственно при выполнении работы в лаборатории на основании указанных в инструкциях классов точности или предельных значений инструментальных погрешностей средств измерений (см. также введение).

Дополнительно поясним оценку погрешностей для ряда омметров, имеющих неравномерную шкалу с диапазонами показаний $0-\infty$, ∞ -0. В таких приборах традиционное понятие «нормирующее значение шкалы», выраженное в единицах измерений — Омах, не имеет смысла.

За нормирующее значение L_N принимают геометрическую длину шкалы, выраженную в делениях любой равномерной шкалы, имеющейся у данного прибора.

Численное значение класса точности при таком его представлении означает максимальную допустимую приведенную погрешность омметра, в данном

случае определяемую как отношение максимально допустимой абсолютной погрешности прибора, выраженной в делениях, к длине $L_{\rm N}$ шкалы омметра в тех же делениях.

Отсюда следует двухступенчатая процедура оценки погрешности результата измерений сопротивления омметрами по его классу точности. Сначала определяют предельную абсолютную погрешность прибора, выраженную в делениях любой равномерной шкалы:

$$\Delta L = \frac{k L_N}{100}$$

где L_N — нормирующее значение равномерной шкалы, выраженное в делениях шкалы; k — класс точности прибора.

На рисунке показаны «выпрямленные шкалы» и некоторое положение указателя — стрелки при измерении сопротивления, а также интервалы $\pm \Delta L$ предельной абсолютной погрешности измерений (в делениях шкалы) определяемые в соответствии с представленной выше формулой. Для того чтобы определить погрешность в единицах измерения сопротивления, необходимо подключить магазин сопротивлений к вольтметру и установить полученное значение сопротивления резистора на магазине сопротивлений. Далее с помощью магазина сопротивлений, изменяя значения сопротивления магазина, отложить по равномерной шкале вправо, а затем влево предельную абсолютную погрешность ΔL , фиксируя при этом получаемые значения магазина сопротивлений.

Определив разность между показаниями магазина сопротивлений и номинальным значением, полученным с помощью вольтметра, результат измерения следует записать в виде

$$R_x = R_{np-\Delta R_2}^{+\Delta R_2}$$

Протокой наблитерений к набораторной работе 1:8 " Изперение параметро в greatpureckux yeneis R1 = 1,1 Om :103 R1=115 On | R1=115,7 OM R2 = 5,0 PM . 103 R2 = 922 OM R2 = 923,5 OM R3 = 8050 Om R3 = 8067 Om R3 = 9,0 Om 103 Lux = 50 per L1 = 195, 2.103 Q1 = 22, 53 R1 = 120 Om L2 = 117,2.103 $Q_2 = 23.00$ R2 = 940 Om C1 = 2.10-9 (D)=0,01 C4 = 63,71-109 Ay = 0,023 R3 = 8200 OM E7-21 B7-26 JDM - B135 12.11.2021 Визорина Терентово Клебинова Munya O.A.

Обработка результатов эксперимента

1. Рассчитаем абсолютную погрешность $\Delta L = \frac{k L_N}{100}$ при измерениях

сопротивлений на соответствующих измерительных приборах на требуемом диапазоне измерений:

1) R1

Аналоговый вольтметр -
$$\Delta L = \frac{7.5 \cdot 100}{100} = 7.5$$

Цифровой вольтметр -
$$\Delta L = \frac{0.02 \cdot 150}{100} = 0$$
, 03

Измеритель иммитанса -
$$\Delta L = \frac{0.16 \cdot 125}{100} = 0$$
, 2

2) R2

Аналоговый вольтметр - $\Delta L = 75$

Цифровой вольтметр - ΔL =0,03

Измеритель иммитанса - ΔL =0,2

3) R3

Аналоговый вольтметр - ΔL =750

Цифровой вольтметр - ΔL =0,3

Измеритель иммитанса - $\Delta L = 0$, 2

Результаты измерений для аналогового вольтметра:

$$R_1 = 120 \pm {}_{5}^{0}O_{M}$$
;

$$R_2 = 940 \pm {}^{50}_{50}O_{M}$$
;

$$R_3 = 8200 \pm {}^{500}_{500}O_M$$
;

Результаты измерений для цифрового вольтметра:

$$R_1 = 115 \pm {}_{0}^{0}OM$$
;

$$R_2 = 922 \pm {}_{0}^{0}O_{M}$$
;

$$R_3 = 8050 \pm {}_0^0 O_M$$
;

Результаты измерений для измерителя имметанса:

$$R_1 = 116$$
, $4 \pm_{0.1}^{0} O_M$;

$$R_2 = 904$$
 , $8 \pm {}^{0,1}_{0}OM$;

$$R_3 = 8046 \pm {}_{0}^{0}O_{M}$$
;

2. Погрешность при измерении индуктивности, емкости, добротности и тангенса угла потерь.

L_2	195.2	мГн
L_4	117.2	мГн
Q_2	22.53	
Q ₄	23.00	

Относительная погрешность

$$\pm \left[0.25(Q+1/Q)+0.1L_{k}/L(Q+1)\right]\%$$

$$\delta Q_2 = 5.65\%$$

$$\delta Q_4 = 5.77\%$$

C_3	2.00	нФ
C_5	63.71	нФ
tg ₃	0.01	
tg ₅	0.023	

Для
$$C_3$$
 (Ск = 160н Φ)

$$\pm \left[2.5(1 + \iota g^2 \delta) + C_k / C(1 + \iota g \delta) \right] 10^{-3}$$

$$\Delta tg_3 = 8,7 \cdot 10^{-3}$$

$$\pm \left[0,15+0,01(C_{k}/C-1)\right]\sqrt{1+ig^{2}}\delta$$

$$\delta C_3 = 1,75\%$$

$$\pm \left[2.5(1 + \iota g^2 \delta) + C/C_H (1 + \iota g \delta) \right] 10^{-3}$$

$$\Delta tg5 = 2.9 \cdot 10^{-3}$$

$$\pm \left[0,15+0,01(C/C_{H}-1)\right]\sqrt{1+tg^{2}\delta}$$

$$\delta C5 = 14.4\%$$

Вывод:

В ходе проведения работы были измерены значения эталонных резисторов R_1 , R_2 , R_3 с помощью аналогового вольтметра, цифрового вольтметра, измерителя имметанса. Также с помощью измерителя имметанса были измерены значения C_3 , C_5 , L_2 , L_4 и показатели добротности и тангенса угла потерь.

Результаты измерения аналоговым вольтметром не соответствуют его классу точности (класс точности 2,5 соответствует погрешности в $\pm 2,5*10^{\rm n}$, где п порядок максимального значения на шкале, а выявленные отклонения в 50 и 500 ом говорят о несоответствии заявленной точности);

Результаты измерения цифровым вольтметром соответствуют его классу точности;

Результаты измерения измерителем имметанса соответствуют его классу точности.