Потенциометрические датчики

Задача. Рассчитать параметры потенциометрического датчика

Краткие теоретические сведения:

Потенциометрический датчик представляет собой реостат, включенный по схеме потенциометра. Потенциометрический датчик преобразует механические перемещения в изменения сопротивления реостата. Расчет потенциометра сводится к расчету сопротивлений: определяются размеры каркаса для намотки, диаметр провода обмотки, количество витков, шаг намотки.

1) рабочая длина каркаса:

$$L = \alpha D\pi/360$$

где L - рабочая длина каскада (мм);

 α - угол поворота;

D - средний диаметр каркаса.

2) минимальное число витков:

$$n=100/\delta_{p}$$
 (%)

где п- минимальное число витков % (витков);

 δ_p - разрешающая способность.

3) шаг намотки:

$$\tau = L/n$$

где τ- шаг намотки (мм).

4) диаметр провода с изоляцией:

$$d_u = \tau - 0.015$$

где d_{μ} - диаметр провода с изоляцией (мм).

5) коэффициент нагрузки:

$$\beta = R_{_{H}}/R = \frac{1 - \delta_{\text{max}}}{4\delta_{\text{max}}}$$

где β- коэффициент нагрузки;

δ max – максимальная погрешность.

6) сопротивление потенциометра:

$$R = \frac{R_{H}}{\beta}$$

где R- сопротивление потенциометра, (Ом).

7) высота каркаса:

$$H = (\pi Rd^2/8 \rho n) - b$$

где Н- высота каркаса (мм)

ρ - удельное сопротивление,

b - толщина каркаса.

Вариант 2

Исходные данные:

RH = 4400 Ом, δ max = 3 %, U = 26 B, D = 55 мм, α = 330, b = 2,5 мм, δ_p = 0,2 %, ρ = 0,42 * 10-6 Ом \cdot м.

Решение:

1) Рабочая длина каркаса:

$$L = \frac{\alpha D\pi}{360} = \frac{330.55.3,14}{360} = 158.3$$
 (MM);

2) Минимальное число витков:

$$n = \frac{100}{\delta_p(\%)} = \frac{100}{0.2} = 500$$
 (витков);

3) Шаг намотки:

$$\tau = \frac{L}{n} = \frac{158,3}{500} = 0,316$$
 (MM);

4) Диаметр провода с изоляцией:

$$d_u = \tau - 0.015 = 0.316 - 0.015 = 0.301$$
 (MM);

Выбираем $d \approx 0.3 \text{ (мм)} = 0.3 \cdot 10^{-3} \text{ (м)};$

5) Коэффициент нагрузки:

$$\beta = \frac{1 - \delta_{\text{max}}}{4\delta_{\text{max}}} = \frac{1 - 0,03}{4 \cdot 0,03} = 8,08$$

6) Сопротивление потенциометра:

$$R = \frac{R_{H}}{\beta} = \frac{4400}{8,08} = 544,5$$
 (OM);

7) Высота каркаса:

$$H = \frac{\pi R d^2}{8 \rho n} - b = 3,14 \cdot 415 \cdot 66 \text{ (M)} = 89,1 \text{ (MM)}.$$

Задание: Рассчитать параметры потенциометра. Исходные данные для расчета взять из таблицы 1, согласно варианту.

Таблица 1

№ вариан та	R _н (Ом)	δmax (%)	U (B)	D (мм)	α	b (мм)	δ _p (%)	р·10 ⁻⁶ (Ом·м)
1	4400	2,0	26	50	330	1,8	0,2	0,49
2	4400	3,0	26	55	330	2,5	0,2	0,42
3	4400	2,7	26	47	330	1,5	0,23	0,49
4	4400	2,3	26	52	330	2,3	0,25	0,42
5	4400	2,1	26	49	330	2,0	0,21	0,42