Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет» Политехнический институт Факультет «Автотранспортный» Кафедра «Автомобильный транспорт»

## Задача № 1 КАЧЕСТВЕННЫЙ АНАЛИЗ РАБОТЫ ПОДШИПНИКОВ КОЛЕНЧАТОГО ВАЛА ДВС

Проверил:

\_\_\_\_/Задорожная Е.А./

\_\_\_\_2023 г.

Автор работы:

студент группы П-416

\_\_\_\_/Ганиев Э.В. /

\_\_\_\_2023 г.

Исходные данные:

| Вариант                                         | Kn43244                |
|-------------------------------------------------|------------------------|
| Диаметр опоры                                   | D = 74,5 мм            |
| Диаметральный установочный зазор                | Δ = 0,092 мм           |
| Относительный эксцентриситет                    | $\chi = 0,8$           |
| Число оборотов коленчатого вала ДВС             | n=                     |
| 1100,1500,1900,2500,3200 об/мин                 |                        |
| Коэффициент динамической вязкости масла $\mu$ = | 0,0061 Па·с            |
| Безразмерная скорость поступательного движения  |                        |
| шипа в подшипнике                               | $\dots d\chi/dt = 0,2$ |
| B                                               | = 25,7 мм              |

Система координат показана на рис.1.

Основная цель расчетов. Восстановить внешнюю силу, действующую на шип для двух случаев нагружения: статического и динамического. Определить влияние оборотов коленчатого вала на расчетные характеристики.



Рисунок 1 – Модель короткой опоры: В – ширина опоры, D – диаметр подшипника 2 ; 1 – шип, O<sub>1</sub>O<sub>2</sub> – линия центров, е – эксцентриситет, W,V – проекции главного вектора сил гидродинамического давления слоя смазки на шип, O<sub>2</sub>XYZ – система координат, ф – угловая координата, h<sub>0</sub> – радиальный зазор

Порядок расчета:

Расчет безразмерных входных параметров методики
Относительная длина опоры:

 $\alpha = B/(2D) = 25,7/(2*74,5) = 0,1724$ 

Угловая скорость:

$$\omega(1) = \frac{\pi \cdot n}{30} = \frac{3, 14 \cdot 1100}{30} = 115,191 \, pa\partial/c$$

Относительная величина зазора:

$$\psi_0 = \frac{h_0}{D/2} = \frac{0,092}{74,5/2} = 0,00246$$

Масштаб угловой скорости:

$$\omega_0 = \frac{\pi \cdot n}{30} = \frac{3,14 \cdot 3200}{30} = 335,103 \text{ pad/c},$$

где n берется при режиме максимальной мощности Nmax, (n=3200 об/мин) Безразмерная угловая скорость:

 $\omega_1(1) = \frac{\omega(1)}{\omega_0} = \frac{115,191}{335,103} = 0,343$ 

Безразмерная величина динамической вязкости:

$$\mu_1 = \frac{\mu}{\mu_0} = \frac{0,0061}{0,0069} = 0,884$$

где µ0 – вязкость масла при 100 С°;

Скоростные параметры при  $\delta = 0$ :

G1 = 
$$\omega 1(1) = 0,343;$$
  
E = 2·d $\chi$ /dt = 2·0,2 = 0,4;

Относительный эксцентриситет:

$$\chi = \frac{e}{h_0}$$

Масштаб для давления:

$$p^{i} = \frac{\omega_{0} \cdot \mu_{0}}{\psi_{0}^{2}} = \frac{335,103 \cdot 0,0069}{0,00246^{2}} = 379057,06 \Pi a$$

 Расчет гидродинамических характеристик смазочного слоя проводится при варьировании n = 1100; 1500; 1900; 2500; 3200 для случая статического нагружения E = 0 и для случая динамического нагружения при E=0,4

А. Установить границы несущей области смазочного слоя (в градусах): Для E = 0,  $\varphi_n$  и  $\varphi_\kappa$  рассчитываются по формулам:

$$\varphi_H = arctg\left(\frac{E}{\chi \cdot G}\right) + \pi = 3.141592, \ \varphi_H = 180^\circ, \varphi_K = \varphi_H + \pi = 2\pi, \ \varphi_K = 360^\circ;$$

Для E = 0,4:

2.

$$\varphi_{_{H}}(1) = arctg\left(\frac{0,4}{0,8\cdot0,343}\right) + 3,14 = 235,49$$
град  
 $\varphi_{_{K}}(1) = \varphi_{_{H}}(1) + \pi = 235,49 + 180 = 415,49$ град

Б. Рассчитать распределение давлений по угловой координате φ в центральном сечении опоры z = 0:

$$\Pi(\varphi) = -3a^2 \mu_1 \frac{G\chi \sin \varphi - E \cos \varphi}{\left(1 - \chi \cos \varphi\right)^3},$$

Изменяя  $\varphi_{\mu} < \varphi < \varphi_{\kappa}$  с шагом 10°. Расчетные значения заносим в таблицу 1 и

|            | n=110  | 00         |            | n=150  | )0         |            | n=190  | 00         |            | n=250   | )0         |            | n=320   | 00         |
|------------|--------|------------|------------|--------|------------|------------|--------|------------|------------|---------|------------|------------|---------|------------|
| ф,<br>град | ф,рад  | П          | ф,<br>град | ф,рад  | П          | ф,<br>град | ф,рад  | П          | ф,<br>град | ф,рад   | П          | ф,<br>град | ф,рад   | П          |
|            | 3,1415 | -4,55827E- |            | 3,1415 | -6,21582E- |            | 3,1415 | -7,87337E- |            | 3,14159 | -1,03597E- |            | 3,14159 | -1,32604E- |
| 180        | 93     | 19         | 180        | 93     | 19         | 180        | 93     | 19         | 180        | 3       | 18         | 180        | 3       | 18         |
|            | 3,3161 | 0,0006593  |            | 3,3161 | 0,0008990  |            | 3,3161 | 0,0011388  |            | 3,31612 | 0,0014984  |            | 3,31612 | 0,0019180  |
| 190        | 26     | 38         | 190        | 26     | 97         | 190        | 26     | 57         | 190        | 6       | 96         | 190        | 6       | 74         |
|            | 3,4906 | 0,0013805  |            | 3,4906 | 0,0018826  |            | 3,4906 | 0,0023846  |            | 3,49065 | 0,0031376  |            | 3,49065 | 0,0040162  |
| 200        | 59     | 77         | 200        | 59     | 05         | 200        | 59     | 33         | 200        | 9       | 75         | 200        | 9       | 24         |
|            | 3,6651 | 0,0022364  |            | 3,6651 | 0,0030497  |            | 3,6651 | 0,0038630  |            | 3,66519 | 0,0050829  |            | 3,66519 | 0,0065061  |
| 210        | 91     | 84         | 210        | 91     | 51         | 210        | 91     | 18         | 210        | 1       | 18         | 210        | 1       | 36         |
|            | 3,8397 | 0,0033244  |            | 3,8397 | 0,0045334  |            | 3,8397 | 0,0057423  |            | 3,83972 | 0,0075556  |            | 3,83972 | 0,0096712  |
| 220        | 24     | 95         | 220        | 24     | 02         | 220        | 24     | 09         | 220        | 4       | 7          | 220        | 4       | 57         |
|            | 4,0142 | 0,0047874  |            | 4,0142 | 0,0065283  |            | 4,0142 | 0,0082692  |            | 4,01425 | 0,0108806  |            | 4,01425 | 0,0139272  |
| 230        | 57     | 78         | 230        | 57     | 79         | 230        | 57     | 79         | 230        | 7       | 31         | 230        | 7       | 08         |
|            | 4,1887 | 0,0068481  |            | 4,1887 | 0,0093384  |            | 4,1887 | 0,0118286  |            |         | 0,0155640  |            |         | 0,0199219  |
| 240        | 9      | 76         | 240        | 9      | 22         | 240        | 9      | 68         | 240        | 4,18879 | 37         | 240        | 4,18879 | 67         |
|            | 4,3633 | 0,0098695  |            | 4,3633 | 0,0134585  |            | 4,3633 | 0,0170474  |            | 4,36332 | 0,0224308  |            | 4,36332 |            |
| 250        | 23     | 78         | 250        | 23     | 15         | 250        | 23     | 53         | 250        | 3       | 59         | 250        | 3       | 0,0287115  |
|            | 4,5378 | 0,0144644  |            | 4,5378 | 0,0197242  |            | 4,5378 | 0,0249840  |            | 4,53785 | 0,0328737  |            | 4,53785 | 0,0420783  |
| 260        | 56     | 48         | 260        | 56     | 48         | 260        | 56     | 47         | 260        | 6       | 46         | 260        | 6       | 95         |
|            | 4,7123 | 0,0216984  |            | 4,7123 | 0,0295887  |            | 4,7123 | 0,0374791  |            | 4,71238 | 0,0493146  |            | 4,71238 | 0,0631227  |
| 270        | 89     | 35         | 270        | 89     | 74         | 270        | 89     | 14         | 270        | 9       | 24         | 270        | 9       | 19         |
|            | 4,8869 | 0,0334693  |            | 4,8869 | 0,0456400  |            | 4,8869 | 0,0578106  |            | 4,88692 | 0,0760666  |            | 4,88692 | 0,0973653  |
| 280        | 22     | 4          | 280        | 22     | 09         | 280        | 22     | 78         | 280        | 2       | 82         | 280        | 2       | 53         |
| 290        | 5,0614 | 0,0532004  | 290        | 5,0614 | 0,0725461  | 290        | 5,0614 | 0,0918917  | 290        | 5,06145 | 0,1209102  | 290        | 5,06145 | 0,1547650  |

|     | 55     | 88        |     | 55     | 2         |     | 55     | 52        |     | 5       |           |     | 5       | 56        |
|-----|--------|-----------|-----|--------|-----------|-----|--------|-----------|-----|---------|-----------|-----|---------|-----------|
|     | 5,2359 | 0,0869972 |     | 5,2359 | 0,1186325 |     | 5,2359 | 0,1502678 |     | 5,23598 | 0,1977209 |     | 5,23598 | 0,2530827 |
| 300 | 88     | 02        | 300 | 88     | 48        | 300 | 88     | 94        | 300 | 8       | 13        | 300 | 8       | 68        |
|     | 5,4105 | 0,1450075 |     | 5,4105 | 0,1977375 |     | 5,4105 | 0,2504675 |     | 5,41052 | 0,3295625 |     | 5,41052 | 0,4218400 |
| 310 | 21     | 23        | 310 | 21     | 31        | 310 | 21     | 4         | 310 | 1       | 52        | 310 | 1       | 67        |
|     | 5,5850 | 0,2403308 |     | 5,5850 | 0,3277238 |     | 5,5850 | 0,4151168 |     | 5,58505 | 0,5462064 |     | 5,58505 | 0,6991442 |
| 320 | 54     | 35        | 320 | 54     | 66        | 320 | 54     | 97        | 320 | 4       | 44        | 320 | 4       | 48        |
|     | 5,7595 | 0,3743009 |     | 5,7595 | 0,5104104 |     | 5,7595 | 0,6465198 |     | 5,75958 | 0,8506840 |     | 5,75958 | 1,0888755 |
| 330 | 87     | 84        | 330 | 87     | 33        | 330 | 87     | 82        | 330 | 7       | 55        | 330 | 7       | 9         |
|     | 5,9341 | 0,4851028 |     | 5,9341 | 0,6615038 |     | 5,9341 | 0,8379049 |     | 5,93411 | 1,1025064 |     | 5,93411 | 1,4112082 |
| 340 | 19     | 39        | 340 | 19     | 71        | 340 | 19     | 04        | 340 | 9       | 52        | 340 | 9       | 59        |
|     | 6,1086 | 0,3945901 |     | 6,1086 | 0,5380774 |     | 6,1086 | 0,6815647 |     | 6,10865 | 0,8967957 |     | 6,10865 | 1,1478985 |
| 350 | 52     | 16        | 350 | 52     | 31        | 350 | 52     | 46        | 350 | 2       | 18        | 350 | 2       | 19        |
|     | 6,2831 | 6,64595E- |     | 6,2831 | 9,06266E- |     | 6,2831 | 1,14794E- |     | 6,28318 | 1,51044E- |     | 6,28318 | 1,93337E- |
| 360 | 85     | 16        | 360 | 85     | 16        | 360 | 85     | 15        | 360 | 5       | 15        | 360 | 5       | 15        |

## Таблица 2- Результаты расчетов, при Е=0,4

|         | n=1100 |           | n=1500  |       |          | n=1900  |       |          | n=2500  |       |          | n=3200  |        |         |
|---------|--------|-----------|---------|-------|----------|---------|-------|----------|---------|-------|----------|---------|--------|---------|
| ф, град | ф,рад  | П         | ф, град | ф,рад | П        | ф, град | ф,рад | П        | ф, град | ф,рад | П        | ф, град | ф,рад  | Π       |
| 235,491 | 4,110  |           | 226,847 | 3,959 | 0,000000 | 220,100 | 3,841 | 0,000000 | 212,619 | 3,710 | 0,000000 | 206,565 |        | 0,00000 |
| 5       | 1      | 2,141E-18 | 6       | 2     | 0        | 9       | 5     | 0        | 2       | 9     | 0        | 1       | 3,6052 | 0       |
| 245,491 | 4,284  |           | 236,847 | 4,133 | 0,002529 | 230,100 | 4,016 | 0,002455 | 222,619 | 3,885 | 0,002535 | 216,565 |        | 0,00276 |
| 5       | 6      | 2,815E-03 | 6       | 8     | 1        | 9       | 0     | 9        | 2       | 4     | 5        | 1       | 3,7798 | 5       |
| 255,491 | 4,459  |           | 246,847 | 4,308 | 0,006513 | 240,100 | 4,190 | 0,006123 | 232,619 | 4,060 | 0,006106 | 226,565 |        | 0,00648 |
| 5       | 2      | 7,573E-03 | 6       | 3     | 8        | 9       | 6     | 3        | 2       | 0     | 5        | 1       | 3,9543 | 2       |
| 265,491 | 4,633  |           | 256,847 | 4,482 | 0,013097 | 250,100 | 4,365 | 0,011895 | 242,619 | 4,234 | 0,011437 | 236,565 |        | 0,01179 |
| 5       | 7      | 1,595E-02 | 6       | 8     | 5        | 9       | 1     | 7        | 2       | 5     | 0        | 1       | 4,1288 | 8       |

PAGE \\* MERGEFORMAT29

| 275,491 | 4,808 |            | 266,847 | 4,657 | 0,024438 | 260,100 | 4,539 | 0,021397 | 252,619 | 4,409 | 0,019788 | 246,565 |         | 0,01980 |
|---------|-------|------------|---------|-------|----------|---------|-------|----------|---------|-------|----------|---------|---------|---------|
| 5       | 2     | 3,126E-02  | 6       | 4     | 9        | 9       | 6     | 2        | 2       | 0     | 0        | 1       | 4,3034  | 6       |
| 285,491 | 4,982 |            | 276,847 | 4,831 | 0,044768 | 270,100 | 4,714 | 0,037693 | 262,619 | 4,583 | 0,033444 | 256,565 |         | 0,03241 |
| 5       | 8     | 6,035E-02  | 6       | 9     | 1        | 9       | 2     | 7        | 2       | 6     | 4        | 1       | 4,4779  | 8       |
| 295,491 | 5,157 |            | 286,847 | 5,006 | 0,082664 | 280,100 | 4,888 | 0,066784 | 272,619 | 4,758 | 0,056699 | 266,565 |         | 0,05310 |
| 5       | 3     | 1,177E-01  | 6       | 4     | 8        | 9       | 7     | 7        | 2       | 1     | 4        | 1       | 4,6524  | 9       |
| 305,491 | 5,331 |            | 296,847 | 5,181 | 0,156024 | 290,100 | 5,063 | 0,120793 | 282,619 | 4,932 | 0,097902 | 276,565 |         | 0,08843 |
| 5       | 8     | 2,343E-01  | 6       | 0     | 8        | 9       | 2     | 0        | 2       | 6     | 8        | 1       | 4,8270  | 0       |
| 315,491 | 5,506 |            | 306,847 | 5,355 | 0,302570 | 300,100 | 5,237 | 0,224764 | 292,619 | 5,107 | 0,173765 | 286,565 |         | 0,15110 |
| 5       | 4     | 4,761E-01  | 6       | 5     | 1        | 9       | 7     | 1        | 2       | 2     | 1        | 1       | 5,0015  | 6       |
| 325,491 | 5,680 |            | 316,847 | 5,530 | 0,599334 | 310,100 | 5,412 | 0,430310 | 302,619 | 5,281 | 0,318231 | 296,565 |         | 0,26642 |
| 5       | 9     | 9,679E-01  | 6       | 0     | 4        | 9       | 3     | 9        | 2       | 7     | 6        | 1       | 5,1760  | 2       |
| 335,491 | 5,855 |            | 326,847 | 5,704 | 1,183125 | 320,100 | 5,586 | 0,837319 | 312,619 | 5,456 | 0,598992 | 306,565 |         | 0,48468 |
| 5       | 4     | 1,873E+00  | 6       | 6     | 3        | 9       | 8     | 9        | 2       | 2     | 5        | 1       | 5,3506  | 7       |
| 345,491 | 6,030 |            | 336,847 | 5,879 | 2,198676 | 330,100 | 5,761 | 1,599460 | 322,619 | 5,630 | 1,137924 | 316,565 |         | 0,90105 |
| 5       | 0     | 3,138E+00  | 6       | 1     | 8        | 9       | 3     | 4        | 2       | 8     | 8        | 1       | 5,5251  | 1       |
| 355,491 | 6,204 |            | 346,847 | 6,053 | 3,471750 | 340,100 | 5,935 | 2,789896 | 332,619 | 5,805 | 2,087133 | 326,565 |         | 1,66427 |
| 5       | 5     | 3,996E+00  | 6       | 6     | 1        | 9       | 9     | 5        | 2       | 3     | 8        | 1       | 5,6996  | 7       |
| 365,491 | 6,379 |            | 356,847 | 6,228 | 4,068271 | 350,100 | 6,110 | 3,944352 | 342,619 | 5,979 | 3,389480 | 336,565 |         | 2,87274 |
| 5       | 0     | 3,473E+00  | 6       | 2     | 6        | 9       | 4     | 3        | 2       | 8     | 1        | 1       | 5,8742  | 8       |
| 375,491 | 6,553 |            | 366,847 | 6,402 | 3,194708 | 360,100 | 6,284 | 3,936839 | 352,619 | 6,154 | 4,265996 | 346,565 |         | 4,15221 |
| 5       | 6     | 2,048E+00  | 6       | 7     | 3        | 9       | 9     | 7        | 2       | 4     | 0        | 1       | 6,0487  | 8       |
| 385,491 | 6,728 |            | 376,847 | 6,577 | 1,680957 | 370,100 | 6,459 | 2,556741 | 362,619 | 6,328 | 3,613852 | 356,565 |         | 4,31709 |
| 5       | 1     | 8,925E-01  | 6       | 2     | 6        | 9       | 5     | 0        | 2       | 9     | 6        | 1       | 6,2232  | 4       |
| 395,491 | 6,902 |            | 386,847 | 6,751 | 0,630969 | 380,100 | 6,634 | 1,089057 | 372,619 | 6,503 | 1,898058 | 366,565 |         | 2,79170 |
| 5       | 6     | 3,091E-01  | 6       | 8     | 7        | 9       | 0     | 9        | 2       | 4     | 0        | 1       | 6,3978  | 3       |
| 405,491 | 7,077 |            | 396,847 | 6,926 | 0,161267 | 390,100 | 6,808 | 0,291529 | 382,619 | 6,678 | 0,568334 | 376,565 |         | 0,96629 |
| 5       | 2     | 7,851E-02  | 6       | 3     | 5        | 9       | 5     | 2        | 2       | 0     | 3        | 1       | 6,5723  | 6       |
| 415,491 | 7,251 |            | 406,847 | 7,100 | 0,000000 | 400,100 | 6,983 | 0,000000 | 392,619 | 6,852 | 0,000000 | 386,565 | 6,74683 | 0,00000 |
| 5       | 7     | -2,412E-16 | 6       | 8     | 0        | 9       | 1     | 0        | 2       | 5     | 0        | 1       | 3       | 0       |

В. Построить графические зависимости Π(φ) для каждого из наборов величин (n, E), используя результаты расчетов, приведенные в таблицах 1 и 2.
Графические зависимости представлены на рисунке 2 и 3.



Рисунок 2 – Эпюры ГДД для статического нагружения (Е=0)



Рисунок 3 – Эпюры ГДД для динамического нагружения (Е=0,4)

Г. Используя табл. 1 и 2 совместно с рис. 2 и 3 определяем максимум Π(φ) для каждого из заданных (n, E) и координату φ<sub>max</sub>. Рассчитать размерную величину давлений по формуле:

$$\mathbf{p} = \mathbf{p}^* \cdot \mathbf{\Pi}$$

Результаты расчета по формуле представлены в таблице 3.

|     |      | max     | φmax,    |           |
|-----|------|---------|----------|-----------|
| E   | n    | П(n)    | град     | max Р, Па |
|     |      | 0,48510 |          |           |
|     | 1100 | 3       | 340      | 183881,7  |
|     |      | 0,66150 |          |           |
|     | 1500 | 4       | 340      | 250747,7  |
| 0   |      | 0,83790 |          |           |
| 0   | 1900 | 5       | 340      | 317613,8  |
|     |      | 1,10250 |          |           |
|     | 2500 | 6       | 340      | 417912,9  |
|     |      | 1,41120 |          |           |
|     | 3200 | 8       | 340      | 534928,4  |
|     |      | 3,99594 |          | 1514691,  |
|     | 1100 | 7       | 358,9705 | 9         |
|     |      | 4,06827 |          | 1542107,  |
|     | 1500 | 2       | 358,9705 | 1         |
| 0.4 |      | 3,94435 |          | 1495134,  |
| 0,4 | 1900 | 2       | 348,9705 | 6         |
|     |      | 4,26599 |          | 1617055,  |
|     | 2500 | 6       | 348,9705 | 9         |
|     |      | 4,31709 |          | 1636425,  |
|     | 3200 | 4       | 348,9705 | 0         |

Таблица 3 – Максимальные значения гидродинамических давлений

Графические зависимости max П(n) для E=0; E=0,4 представлены на рисунках 4 и 5.



Рисунок 4 – Зависимость максимальных давлений от n, при E=0



Рисунок 5 – Зависимость максимальных давлений от n, при E=0,4

Д. Рассчитываем распределение гидродинамических давлений по осевой координате в середине несущей области  $\varphi_{\iota} = \frac{1}{2}(\varphi_{\mu} + \varphi_{\kappa})$  по формуле:

$$\Pi(z) = 3a^2 \mu_1 \frac{G\chi \sin\varphi_* - E \cos\varphi_*}{(1 - \chi \cos\varphi_*)^3} \left[ \left(\frac{z}{a}\right)^2 - 1 \right]$$

где  $\alpha$  – безразмерная координата изменяется с шагом  $\alpha$  /8, в пределах -  $\alpha \leq z \leq \alpha.$ 

Расчетные значения П(z) сводятся в таблицу 4

Таблица 4 – Распределение гидродинамических давлений в смазочном слое опоры по осевой координате в середине несущей области при E=0 и при E=0,4

|          |         |         | E=0     |             |             |           |             | E=0,4    |         |             |  |  |
|----------|---------|---------|---------|-------------|-------------|-----------|-------------|----------|---------|-------------|--|--|
|          |         |         |         |             |             | 325,49147 |             | 310,1009 | 302,619 |             |  |  |
| φ*       | 270     | 270     | 270     | 270         | 270         | 7         | 316,8476103 | 1        | 2       | 296,5650512 |  |  |
| z        |         |         |         |             |             |           |             |          |         |             |  |  |
| n        | 1100    | 1500    | 1900    | 2500        | 3200        | 1100      | 1500        | 1900     | 2500    | 3200        |  |  |
|          |         |         |         |             |             |           |             |          |         |             |  |  |
| -0,17248 | 0       | 0       | 0       | 0           | 0           | 0         | 0           | 0        | 0       | 0           |  |  |
|          | 0,00508 | 0,00693 | 0,00878 |             |             | 0,2268543 |             | 0,279807 | 0,31952 |             |  |  |
| -0,15092 | 6       | 5       | 4       | 0,011558115 | 0,014794387 | 7         | 0,253330741 | 1        | 2       | 0,365855321 |  |  |
|          | 0,00949 | 0,01294 | 0,01639 |             |             | 0,4234614 |             | 0,522306 |         |             |  |  |
| -0,12936 | 3       | 5       | 7       | 0,021575148 | 0,027616189 | 9         | 0,472884049 | 6        | 0,59644 | 0,682929933 |  |  |
|          | 0,01322 | 0,01803 | 0,02283 |             |             | 0,5898213 |             | 0,727498 | 0,83075 |             |  |  |
| -0,1078  | 2       | 1       | 9       | 0,030051099 | 0,038465407 | 6         | 0,658659926 | 5        | 6       | 0,951223836 |  |  |
|          | 0,01627 | 0,02219 | 0,02810 |             |             | 0,7259339 |             | 0,895382 | 1,02246 |             |  |  |
| -0,08624 | 4       | 2       | 9       | 0,036985968 | 0,047342039 | 8         | 0,81065837  | 8        | 9       | 1,170737028 |  |  |
|          | 0,01864 | 0,02542 | 0,03220 |             |             | 0,8317993 |             | 1,025959 | 1,17157 |             |  |  |
| -0,06468 | 7       | 8       | 9       | 0,042379755 | 0,054246086 | 5         | 0,928879382 | 4        | 9       | 1,341469512 |  |  |
|          | 0,02034 | 0,02773 | 0,03513 |             |             | 0,9074174 |             | 1,119228 | 1,27808 |             |  |  |
| -0,04312 | 2       | 9       | 7       | 0,04623246  | 0,059177549 | 7         | 1,013322962 | 5        | 7       | 1,463421285 |  |  |
|          | 0,02135 | 0,02912 | 0,03689 |             |             | 0,9527883 |             | 1,175189 | 1,34199 |             |  |  |
| -0,02156 | 9       | 6       | 4       | 0,048544083 | 0,062136426 | 5         | 1,063989111 | 9        | 1       | 1,53659235  |  |  |
|          | 0,02169 | 0,02958 | 0,03747 |             |             | 0,9679119 |             | 1,193843 | 1,36329 |             |  |  |
| 0        | 8       | 9       | 9       | 0,049314624 | 0,063122719 | 7         | 1,080877827 | 7        | 2       | 1,560982705 |  |  |
|          | 4,71238 | 4,71238 | 4,71238 |             |             | 5,6808979 |             | 5,412281 | 5,28170 |             |  |  |
| ф*рад    | 9       | 9       | 9       | 4,71238898  | 4,71238898  | 6         | 5,530034026 | 9        | 2       | 5,176036589 |  |  |



Графики n (z) для каждого набора (n, E) представлены на рисунках 6 и 7:

Рисунок 6 – Распределение гидродинамических давлений по ширине опоры (E=0)



Рисунок 7 – Распределение гидродинамических давлений по ширине опоры (E=0,4)

Е. Рассчитать составляющие главного вектора сил гидродинамического давления в слое R(V, W) по формулам:

$$W = -\chi a^{2} \mu_{1} \left( A_{3}^{11}G - \frac{E}{\chi} A_{3}^{02} \right);$$
$$V = -\chi a^{2} \mu_{1} \left( A_{3}^{20}G - \frac{E}{\chi} A_{3}^{11} \right),$$

где значения интегральных функций:

$$A_k^{mn}(\chi) = \int_{\varphi_H}^{\varphi_K} \frac{\sin^m \varphi \cdot \cos^n \varphi}{\left(1 - \chi^2 \cos^2 \varphi_H\right)^k} \cdot d\varphi$$

а для величин индексов k = 3; m = 0, 1, 2; n = 0, 1, 2; интегралы могут быть рассчитаны по следующим формулам:

$$\begin{split} A_{3}^{11} &= 2\chi\cos^{3}\varphi_{H} \frac{1}{\left(1-\chi^{2}\cos^{2}\varphi_{H}\right)^{2}} \\ A_{3}^{20} &= A_{3}^{00} - A_{3}^{02}, \\ A_{3}^{00} &= \frac{1}{2\left(1-\chi^{2}\right)} \left[ 3A_{2}^{00} - A_{1}^{00} - \frac{2\chi\sin\varphi_{H}\cdot\left(1+\chi^{2}\cos^{2}\varphi_{H}\right)}{\left(1-\chi^{2}\cos^{2}\varphi_{H}\right)^{2}} \right] \\ A_{3}^{02} &= \frac{1}{\chi^{2}} \left[ A_{1}^{00} - 2A_{2}^{00} + A_{3}^{00} \right], \\ A_{1}^{00} &= \frac{2}{\sqrt{1-\chi^{2}}} \left[ \frac{\pi}{2} - \arctan\left(\frac{\chi\sin\varphi_{H}}{\sqrt{1-\chi^{2}}}\right) \right], \\ A_{2}^{00} &= \frac{1}{1-\chi^{2}} \left[ A_{1}^{00} + \frac{2\chi\sin\varphi_{H}}{1-\chi^{2}\cos^{2}\varphi_{H}} \right]. \end{split}$$

Таблица 6 – Значения интегралов и составляющих главного вектора сил гидродинамического давления

| E   | n        | A <sub>3</sub> <sup>11</sup> | A1 <sup>00</sup> | A <sub>2</sub> <sup>00</sup> | A <sub>3</sub> <sup>00</sup> | A <sub>3</sub> <sup>02</sup> | A <sub>3</sub> <sup>20</sup> | V                 | W                 |
|-----|----------|------------------------------|------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------|-------------------|
|     | 110<br>0 |                              |                  |                              |                              |                              |                              | -<br>0,05259<br>8 | 0,08929<br>4      |
|     | 150<br>0 |                              |                  |                              |                              |                              |                              | -<br>0,07172<br>5 | 0,12176<br>5      |
| 0   | 190<br>0 | -<br>12,345<br>7             | 5,23598<br>8     | 14,544410<br>43              | 53,329504<br>92              | 46,05729<br>97               | 7,2722052<br>17              | -<br>0,09085<br>2 | 0,15423<br>5      |
|     | 250<br>0 |                              |                  |                              |                              |                              |                              |                   | -<br>0,11954<br>2 |
|     | 320<br>0 |                              |                  |                              |                              |                              |                              | -<br>0,15301<br>4 | 0,25976<br>4      |
|     | 110<br>0 | -<br>0,4607<br>9             | 8,01066<br>4     | 17,642657<br>57              | 65,163133<br>58              | 59,20075<br>38               | 5,9623797<br>52              | -<br>0,04797<br>2 | 0,62615<br>2      |
|     | 150<br>0 | -<br>1,0428<br>1             | 7,80788<br>3     | 17,060704<br>45              | 63,248651<br>95              | 57,71113<br>41               | 5,5375178<br>5               | -<br>0,06558<br>7 | 0,61743<br>2      |
| 0,4 | 190<br>0 | -<br>1,8299<br>5             | 7,60134<br>8     | 16,538311<br>73              | 61,497336<br>15              | 56,28447<br>06               | 5,2128656<br>01              | -<br>0,08437<br>6 | 0,615             |
|     | 250<br>0 | -<br>3,2072<br>9             | 7,31329<br>3     | 15,926564<br>27              | 59,393574<br>57              | 54,45896<br>73               | 4,9346072<br>63              | -<br>0,11485<br>8 | 0,62565<br>5      |
|     | 320<br>0 | -<br>4,8074<br>6             | 7,02826<br>5     | 15,449975<br>51              | 57,692593<br>99              | 52,84516<br>91               | 4,8474248<br>65              | -<br>0,15257<br>1 | 0,65710<br>8      |

Ж. Рассчитать коэффициент нагруженности опоры (число Зоммерфельда):

$$So = \sqrt{W^2 + V^2}$$

Определить значение характеристики режима работы опоры:

$$S_1 = \frac{S_0}{\psi_0^2} = \frac{0,103}{0,00246^2} = 16989,45$$

Рассчитать коэффициент перегрузки опоры:

$$k\Pi = \frac{\max \Pi}{S_0}$$

Оценить средние величины гидродинамических давлений в слое (Па) и несущей способности (Н):

$$P_{cp}(B) = \mu_0 \cdot \omega_0 \cdot S_1 = 0,0069 \cdot 335,1 \cdot 16989,45 = 39283,214 \ \Pi a,$$
$$R_{cp}(B) = P_{cp}(B)BD_2.$$

Восстановим модуль и направление внешней силы F, действующей на шип опоры. Для тяжело нагруженных опор коленчатого вала уравнение движения центра шипа записывается в виде уравнения баланса сил, так как инерционными силами, ввиду их малости по сравнению с внешними, пренебрегаем:

$$R(B)+F=0$$

Тогда:

$$F=-R(V+B)$$

Величину угла θ, определяющего положение линии центров относительно линии действия нагрузки, определяют по формуле:

$$\theta = -\arg\left(\frac{V}{W}\right) + \frac{\pi}{2}\left(1 - \frac{W}{|W|}\right).$$

Результаты расчетов по приведенным формулам представлены в таблице 7

| E   | n    | So     | S1      | Рср, Па   | R, H      | θ, рад  | kП       | θ, град |
|-----|------|--------|---------|-----------|-----------|---------|----------|---------|
|     |      | 0,1036 | 16989,4 |           |           |         |          | 30,500  |
|     | 1100 | 3      | 5       | 39283,214 | 75,21361  | 0,53233 | 4,680922 | 2       |
|     |      | 0,1413 | 23167,4 |           |           |         |          | 30,500  |
|     | 1500 | 2      | 3       | 53568,019 | 102,56401 | 0,53233 | 4,680922 | 2       |
| 0   |      | 0,1790 | 29345,4 |           |           |         |          | 30,500  |
|     | 1900 | 0      | 1       | 67852,824 | 129,91441 | 0,53233 | 4,680922 | 2       |
|     |      | 0,2355 | 38612,3 |           |           |         |          | 30,500  |
|     | 2500 | 3      | 9       | 89280,032 | 170,94001 | 0,53233 | 4,680922 | 2       |
|     |      | 0,3014 | 49423,8 | 114278,44 |           |         |          | 30,500  |
|     | 3200 | 8      | 6       | 0         | 218,80322 | 0,53233 | 4,680922 | 2       |
|     |      | 0,6279 | 102950, | 238042,73 |           |         |          |         |
|     | 1100 | 9      | 2       | 7         | 455,76853 | 0,07647 | 6,363109 | 4,3811  |
|     |      | 0,6209 | 101789, | 235358,87 |           |         |          |         |
|     | 1500 | 1      | 5       | 6         | 450,62987 | 0,10583 | 6,552152 | 6,0635  |
| 0.4 |      | 0,6207 | 101765, | 235303,79 |           |         |          |         |
| 0,4 | 1900 | 6      | 7       | 1         | 450,52440 | 0,13635 | 6,354061 | 7,8121  |
|     |      | 0,6361 |         | 241122,20 |           |         |          | 10,402  |
|     | 2500 | 1      | 104282  | 3         | 461,66463 | 0,18156 | 6,706375 | 6       |
|     |      | 0,6745 | 110589, | 255707,42 |           |         |          | 13,071  |
|     | 3200 | 9      | 9       | 0         | 489,59021 | 0,22814 | 6,399599 | 6       |

Таблица 7 – Результаты расчета основных силовых параметров опоры

Построим графические зависимости kП(n) (рис.8), So(n) (рис.9) и θ(n) (рис.10) для заданных значений.



Рисунок 8 – Коэффициент перегрузки опоры



Рисунок 9 – Коэффициент нагруженности опоры



Рисунок 10 – Угол θ, определяющий положение линии центров относительно линии действия нагрузки

На рисунке 11 показаны линии действия внешней силы для заданных режимов нагружения E = 0 и на рисунке 12 E > 0.



Рисунок 11 – Действие внешних сил на шип при статическом (при Е=0)



Рисунок 12 – Действие внешних сил на шип при динамическом (при Е=0,4)

3. Рассчитаем торцовой расход смазки и мощности потерь в опоре, коэффициенты торцового расхода смазки *q<sub>x</sub>* и мощности рассеяния энергии в смазочном слое kN по следующим формулам:

$$q = -\frac{1}{8}G\frac{\chi}{\cos\varphi_H}, \qquad \qquad kN = kN_1 + kN_2 + kN_3.$$

где kN1 – коэффициент потерь мощности на вязкое трение между слоями смазки, kN2, kN3 – коэффициент потерь мощности за счет сопротивления смазки касательному и нормальному направлениям движения шипа соответственно, рассчитываются по формулам:

$$kN_1 = \mu_1 \omega_1^2 \frac{\pi}{\sqrt{1 - \chi^2}}, \qquad kN_2 = -\frac{1}{2} \chi GV, \qquad kN_3 = \frac{1}{2} EW$$

Размерные величины расхода смазки Q(м^3/с) на торцах опоры и мощности РАGE \\* MERGEFORMAT29 рассеяния энергии N(Вт) определим по формулам:

$$Q_x = \frac{BD^2}{2} \psi_0 \omega_0 q_x, \qquad N_x = \frac{BD^2}{2} \mu_0 \frac{\omega_0^2}{\psi_0} k N_x.$$

Результаты расчетов сводим в табл.8. Графики функций для двух случаев нагружения опоры представлены на рис.12, 13.

Таблица 8 – Коэффициенты расхода и потерь мощности, расход и потери мощности в опоре

| E   | n    | q       | kN1     | kN2        | kN3       | kN       | Q (м^3*с)  | N,BT    |
|-----|------|---------|---------|------------|-----------|----------|------------|---------|
|     | 1100 | 0,03437 | 0,54697 | 0,00723229 | 0         | 0,554203 | 2,02908E-  | 12,4002 |
|     | 1100 | 5       | 2       | 2          | 0         | 9        | 06         | 37      |
|     | 1500 | 0,04687 | 1,01709 | 0,01344847 | 0         | 1,030544 | 2,76692E-  | 23,0582 |
|     | 1500 | 5       | 6       | 7          | 0         | 43       | 06         | 92      |
| 0   | 1000 | 0,05937 | 1,63187 | 0,02157733 | 0         | 1,653451 | 3,50477E-  | 36,9957 |
| 0   | 1900 | 5       | 4       | 5          | 0         | 29       | 06         | 48      |
|     | 2500 | 0,07812 | 2,82526 | 0,03735688 | 0         | 2,862623 | 4,61154E-  | 64,0508 |
|     | 2500 | 5       | 7       | 2          | 0         | 43       | 06         | 1       |
|     | 3200 | 0.1     | 4,62891 | 0,06120551 | 0         | 4,690122 | 5,90277E-  | 104,940 |
|     |      | 0,1     | 7       | 5          | 0         | 23       | 06         | 85      |
|     | 1100 | 0,06067 | 0,54697 | 0,00659621 | 0,1252303 | 0,678798 | 3 58165-06 | 15,1880 |
|     |      | 7       | 2       | 4          | 09        | 13       |            | 16      |
|     | 1500 | 0,06853 | 1,01709 | 0.01220756 | 0,1234864 | 1,152880 | 4,04556E-  | 25,7955 |
|     | 1500 | 7       | 6       | 0,01229730 | 94        | 01       | 06         | 34      |
| 0.4 | 1900 | 0,07762 | 1,63187 | 0,02003939 | 0,1229999 | 1,774913 | 4,58193E-  | 39,7134 |
| 0,4 | 1500 | 3       | 4       | 8          | 49        | 3        | 06         | 44      |
|     | 2500 | 0,09275 | 2,82526 | 0,03589319 | 0,1251310 | 2,986290 | 5,47512E-  | 66,8178 |
|     | 2300 | 5       | 7       | 1          | 12        | 75       | 06         | 5       |
|     | 3200 | 0,11180 | 4,62891 | 0,06102833 | 0,1314216 | 4,821366 | 6 50055-06 | 107,877 |
|     | 5200 | 3       | 7       | 1          | 71        | 71       | 0,59955-00 | 43      |



Рисунок 13 – Коэффициент торцового расхода смазки



## Рисунок 14 – Коэффициент мощности рассеяния энергии в смазочном слое

Вывод:

В результате проделанной теориетической работы я выявил, что при увеличении оборотов коленчатого вала увеличивается гидродинамическое давление по осевой и угловым координатам, а также коэффициенты нагруженности, а также перегрузки опоры тоже увеличиваются. Коэффициент потерь мощности увеличивается с увеличением оборотов коленчатого вала из-за его прямой зависимости от площади смазочного слоя.