Содержание

1.	Введение
2.	Расчет параметров пленочного волновода
3.	Расчет полоскового направленного ответвителя16
4.	Расчет характеристических параметров одномодовых оптических
	волокон
5.	Оценка искажения импульсов при распространении по оптическим
	волокнам
6.	Заключение
7.	Список литературы

Введение

Данная курсовая работа направлена на закрепление знаний по курсу "Основы волноводной фотоники и оптоинформатики". Работа состоит из четырех разделов:

Были произведены расчёты и построены графики по четырем разделам:

-расчет параметров пленочного волновода;

-расчет полоскового направленного ответвителя;

-расчет характеристических параметров одномодовых оптических волокон;

-оценка искажения импульсов при распространении по оптическим волокнам.

I часть. Расчет параметров пленочного волновода.

По предварительным данным параметров сред, используемых в пленочных волноводах, согласно вашему варианту, а также длины волны источника излучения и количеству мод, рассчитать:

- 1. Параметры V, u, v для всех мод m (где m = 0,1,2,3) и заполнить таблицу.
- Толщину пленочного волновода, при котором обеспечивается передача всех требуемых мод.
- Значение постоянной распространения в центральной среде β, коэффициенты затухания в подложке γ₁₂, в верхней среде γ₁₃ для всех мод m. Найти углы лучей ψ, соответствующие распространяемым модам, а также коэффициент замедления n_m, скорость c_m всех мод в пленочном волноводе. Заполнить таблицу.
- 4. Величину временного запаздывания между основной и последней модой на единицу длины метра, а также на расстоянии 10м. Основываясь на полученных данных и учитывая, что мощность сигнала распределяется между модами (не учитывать потери в волноводе), оценить максимальную скорость передачи для такого пленочного волновода на расстоянии 10м. По результатам расчета сделать вывод о возможных областях применения пленочного оптического волновода.
- 5. Рассчитать нормированные распределения электрического поля, интенсивности всех мод в поперечном сечении пленочного волновода.

Заполнить таблицу. Нарисовать нормированные зависимости полученных распределений от поперечной координаты x (x = $-6d/8 \div c$ шагом d/8).

Решение:

n 1	n ₂	n ₃	λ, мкм	Кол-во мод
1,6	1,5	1,5	1,1	4

Таблица 1.1 – Исходные данные.

Где n₁ – показатель преломления центральной среды,

n₂ – показатель преломления нижней среды,

- n₃ показатель преломления верхней среды,
- λ длина волны источника излучения,

Волновод несимметричный, т. к. $n_2 \neq n_{3.}$

1. Графическим способом найдем u, v. Полученные значения занесем в таблицу 1.2.

Рис. 1.5 Взаимозависимости параметров v,u и V для симметричного пленочного волновода.

Рисунок 1.1 – Взаимозависимости параметров V, и и v для несимметричного пленочного волновода.

Параметр	u	ν	V	β, 1/м	_{γ12} 1/м	γ ₁₃ 1/м	ψ	n _m	c _m ,
Индекс моды									м/с
m									
0	0,9π	3,8π	12,26	9,10 $ imes$ 10 ⁶	3,14×10 ⁶	3,14×10 ⁶	7,08°	1,59	1,88×1
1	1,8π	3,4π	12,08	9,02 $ imes$ 10 6	2,81×10 ⁶	2,81×10 ⁶	10,38°	1,58	1,89×1
2	2,6π	2,8π	12	8 , $88 imes 10^6$	2,31×10 ⁶	2,31×10 ⁶	14,45°	1,55	1,93×1
3	3,4π	1,8π	12,08	8,69×10 ⁶	$1,48 \times 10^{6}$	$1,48 \times 10^{6}$	18,62°	1,52	1,97×1

Таблица 1	.2 – Pa	ссчитанные	парамет	ры.
-----------	---------	------------	---------	-----

2. Найдем V, результат запишем в таблицу 1.2:

$$V^{2} = u^{2} + v^{2}$$
, значит
 $V = \sqrt{u^{2} + v^{2}}$

$$V(0) = \sqrt{(0.9 \pi)^2 + (3.8 \pi)^2} = 12.26$$
$$V(1) = \sqrt{(1.8 \pi)^2 + (3.4 \pi)^2} = 12.08$$
$$V(2) = \sqrt{(2.6 \pi)^2 + (2.8 \pi)^2} = 12$$
$$V(3) = \sqrt{(3.4 \pi)^2 + (1.8 \pi)^2} = 12.08$$

3. Найдем толщину пленочного волновода d, при котором обеспечивается передача всех требуемых мод:

$$Vcp = \frac{2\pi d}{\lambda} \sqrt{n_1^2 - n_2^2}$$

, выразим из формулы d, получаем

$$d = \frac{V\lambda}{2\pi\sqrt{n_1^2 - n_2^2}}$$

 $d = \frac{12.1 * 1,1}{2 \pi \sqrt{1.6 - 1.5^2}} = 3.8 \text{ мкм}$

Найдем значение постоянной распространения в центральной среде
 β. Для этого рассчитаем k₁ (волновой вектор в центральной среде):

$$k_1 = \frac{2\pi}{\lambda} * n_1 = \frac{2\pi}{1, 1 * 10^{-6}} * 1, 6 = 9.14 * 10^{6} \frac{1}{M}$$

Зная k₁, можем рассчитать значение постоянной распространения в центральной среде β. Получившееся значение запишем в таблицу 1.2:

$$\beta = \sqrt{k_1^2 - \frac{u^2}{d^2}}$$
$$\beta(0) = \sqrt{(9.14 * 10^6)^2 - \frac{(0, 9\pi)^2}{(3.8 * 10^{-6})^2}} = 9.10 * 10^6 \frac{1}{M}$$
$$\beta(1) = \sqrt{(9.14 * 10^6)^2 - \frac{(1.8\pi)^2}{(3.8 * 10^{-6})^2}} = 9.02 * 10^6 \frac{1}{M}$$
$$\beta(2) = \sqrt{(9.14 * 10^6)^2 - \frac{(2.6\pi)^2}{(3.8 * 10^{-6})^2}} = 8.88 * 10^6 \frac{1}{M}$$
$$\beta(3) = \sqrt{(9.14 * 10^6)^2 - \frac{(3.4\pi)^2}{(3.8 * 10^{-6})^2}} = 8.69 * 10^6 \frac{1}{M}$$

 Найдем коэффициенты затухания в подложке γ₁₂ для всех мод. Результат запишем в таблицу 1.2.

$$\gamma_{12} = \frac{v}{d}$$

$$\gamma_{12}(0) = \frac{3.8\pi}{3.8 \times 10^{-6}} = 3.14 \times 10^{6} \frac{1}{M}$$
$$\gamma_{12}(1) = \frac{3.4\pi}{3.8 \times 10^{-6}} = 2.81 \times 10^{6} \frac{1}{M}$$
$$\gamma_{12}(2) = \frac{2.8\pi}{3.8 \times 10^{-6}} = 2,31 \times 10^{6} \frac{1}{M}$$
$$\gamma_{12}(3) = \frac{1.8\pi}{3.8 \times 10^{-6}} = 1.48 \times 10^{6} \frac{1}{M}$$

6. Найдем коэффициенты затухания в верхней среде γ₁₃ для всех мод
 m. Результат запишем в таблицу 1.2:

$$\gamma_{12} = \gamma_{13}$$

Найдем углы лучей ψ, соответствующие распространяемым модам.
 Результат запишем в таблицу 1.2:

$$\psi = \arccos(\frac{\beta}{k_1})$$

$$\psi(0) = \arccos\left(\frac{9.10 * 10^6}{9.14 * 10^6}\right) = 7.08^\circ$$

$$\psi(1) = \arccos\left(\frac{9.02 * 10^6}{9.14 * 10^6}\right) = 10.38^{\circ}$$

$$\psi(2) = \arccos\left(\frac{8.88 \times 10^6}{9.14 \times 10^6}\right) = 14.45^{\circ}$$

- $\psi(3) = \arccos\left(\frac{8.69 \times 10^6}{9.14 \times 10^6}\right) = 18.62^{\circ}$
 - 8. Найдем коэффициент замедления n_m всех мод в пленочном волноводе. Результат запишем в таблицу 1.2:

$$n_m = \frac{\beta}{k_0}$$

$$k_{0} = \frac{2\pi}{\lambda} = \frac{2\pi}{1, 1*10^{-6}} = 5.71*10^{6} \frac{1}{M}$$

$$n_{m}(0) = \frac{9.10*10^{6}}{5.71*10^{6}} = 1.59$$

$$n_{m}(1) = \frac{9.02*10^{6}}{5.71*10^{6}} = 1,58$$

$$n_{m}(2) = \frac{8.88*10^{6}}{5.71*10^{6}} = 1,55$$

$$n_{m}(3) = \frac{8.69*10^{6}}{5.71*10^{6}} = 1,52$$

9. Найдем скорость с_т всех мод в пленочном волноводе. Результат запишем в таблицу 1.2:

$$c_m = \frac{c_0}{n_m}$$

где $c_0 = 3 * 10^8 \, \text{м/c}$ – скорость света в свободном пространстве

$$c_{m}(0) = \frac{3 * 10^{8}}{1,59} = 1,88 * 10^{8} \text{ m/c}$$

$$c_{m}(1) = \frac{3 * 10^{8}}{1,58} = 1,89 * 10^{8} \text{ m/c}$$

$$c_{m}(2) = \frac{3 * 10^{8}}{1,55} = 1,93 * 10^{8} \text{ m/c}$$

$$c_{m}(3) = \frac{3 * 10^{8}}{1,52} = 1,97 * 10^{8} \text{ m/c}$$

 Рассчитаем нормированные распределения электрического поля, интенсивности всех мод в поперечном сечении пленочного волновода. Заполним таблицу 1.3.

Индекс моды	Расстояние х	-6d/8	-5d/8	-d/2	-3d/8	-d/4	-d/8	0	d/8	d/4	3d/8	d/2	5d/8	6d/8
0	Ey	0,007	0,035	0,15	0,48	0,76	0,93	1	0,93	0,76	0,48	0,15	0,035	0,007
m = 0														
	E_y	-0,02	-	-0,3	-	-	-	0	0,64	0,98	0,85	0,3	0,08	0,02
m = 1			0,08		0,85	0,98	0,64							
	Ey	-	-	-	-	-	0,52	1	0,52	-	-	-	-	-
m = 2		0,06	0,19	0,58	0,99	0,45				0,45	0,99	0,58	0,19	0,06
		5												5
m = 3	E_y	0,2	0,4	0,8	0,76	-	-	0	0,97	0,45	-	-0,8	-0,4	-0,2
						0,45	0,97				0,76			

Таблица 1.3 – Рассчитанные параметры

Распределения электрического поля в поперечном сечении определяются:

$$E_{y} = \begin{cases} \cos\left(\frac{u}{d} * x\right), npu \ m = 0, 2\\ \sin\left(\frac{u}{d} * x\right), npu \ m = 1 \end{cases} |x| < d/2$$

Распределения электрического поля вне пленки определяются:

$$E_{y} = \begin{cases} \cos\left(\frac{u}{2}\right)e^{-\gamma_{12}(|x|-\frac{d}{2})}, npu \, m = 0, 2\\ \frac{x}{|x|}\sin\left(\frac{u}{2}\right)e^{-\gamma_{12}(|x|-\frac{d}{2})}, npu \, m = 1 \end{cases} |x| \ge d/2$$

Расчёт для m=0

$$E_{y}\left(\frac{-6d}{8}\right) = \cos i = 0.007$$

$$E_{y}\left(\frac{-5d}{8}\right) = \cos i = 0.035$$

$$E_{y}\left(\frac{-d}{2}\right) = \cos i = 0.15$$

$$E_{y}\left(\frac{-3d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{-3 \times 3.8 \times 10^{-6}}{8}\right)\right) = 0.48$$

$$E_{y}\left(\frac{-d}{4}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{-3.8 \times 10^{-6}}{4}\right)\right) = 0.76$$

$$E_{y}\left(\frac{-d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{-3.8 \times 10^{-6}}{8}\right)\right) = 0.93$$

$$E_{y}(0) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{3.8 \times 10^{-6}}{8}\right)\right) = 0.93$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{3.8 \times 10^{-6}}{4}\right)\right) = 0.76$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{3.8 \times 10^{-6}}{8}\right)\right) = 0.48$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} * \left(\frac{3 \times 3.8 \times 10^{-6}}{8}\right)\right) = 0.48$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{0.9\pi}{3.8 \times 10^{-6}} \times \left(\frac{3 \times 3.8 \times 10^{-6}}{8}\right)\right) = 0.48$$

$$E_{y}\left(\frac{d}{8}\right) = \cos i = 0.035$$

$$E_{y}\left(\frac{6d}{8}\right) = \cos i = 0.007$$

Рисунок 1.2 – Типичное распределение электрического поля мод пленочного оптического волновода

Расчёт для m=1
$$E_y\left(\frac{-6d}{8}\right) = \frac{\frac{-6*3.8*10^{-6}}{8}}{\left|\frac{-6*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{1.8\pi}{2}\right) * e^{-2.81*10^6*\left(\left|\frac{-6*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)}$$

=-0.02

$$E_{y}\left(\frac{-5d}{8}\right) = \frac{\frac{-5*3.8*10^{-6}}{8}}{\left|\frac{-5*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{1.8\pi}{2}\right) * e^{-2.81*10^{6}*\left(\left|\frac{-5*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)} = i - 0.08$$

$$E_{y}\left(\frac{-d}{2}\right) = \frac{\frac{-3.8 \times 10^{-6}}{2}}{\left|\frac{-3.8 \times 10^{-6}}{2}\right|} \times \sin\left(\frac{1.8\pi}{2}\right) \times e^{-2.81 \times 10^{6} \times \left(\left|\frac{-3.8 \times 10^{-6}}{2}\right| - \frac{3.8 \times 10^{-6}}{2}\right)} = i - 0.3$$

$$E_{y}\left(\frac{-3d}{8}\right) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*\left(\frac{-3*3.8*10^{-6}}{8}\right)\right) = -0.85$$

$$E_{y}\left(\frac{-d}{4}\right) = \sin\left(\frac{1.8\,\pi}{3.8*10^{-6}}*\left(\frac{-3.8*10^{-6}}{4}\right)\right) = -0.98$$

$$E_{y}\left(\frac{-d}{8}\right) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*\left(\frac{-3.8*10^{-6}}{8}\right)\right) = -0.64$$

$$E_{y}(0) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*(0)\right) = 0$$

$$E_{y}\left(\frac{d}{8}\right) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*\left(\frac{3.8*10^{-6}}{8}\right)\right) = 0.64$$

$$E_{y}\left(\frac{d}{4}\right) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*\left(\frac{3.8*10^{-6}}{4}\right)\right) = 0.98$$

$$E_{y}\left(\frac{3d}{8}\right) = \sin\left(\frac{1.8\pi}{3.8*10^{-6}}*\left(\frac{3*3.8*10^{-6}}{8}\right)\right) = 0.85$$

$$E_{y}\left(\frac{d}{2}\right) = \frac{\frac{3.8*10^{-6}}{2}}{\left|\frac{3.8*10^{-6}}{2}\right|} * \sin\left(\frac{1.8\pi}{2}\right) * e^{-2.81*10^{6}*\left(\left|\frac{3.8*10^{-6}}{2}\right| - \frac{3.8*10^{-6}}{2}\right)} = 0.3$$

$$E_{y}\left(\frac{5d}{8}\right) = \frac{\frac{5*3.8*10^{-6}}{8}}{\left|\frac{5*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{1.8\pi}{2}\right) * e^{-2.81*10^{6}*\left(\left|\frac{5*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)} = 0.08$$

$$E_{y}\left(\frac{6d}{8}\right) = \frac{\frac{6*3.8*10^{-6}}{8}}{\left|\frac{6*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{1.8\pi}{2}\right) * e^{-2.81*10^{6}*\left(\left|\frac{6*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)} = 0.02$$

Расчёт для т=2

$$E_{y}\left(\frac{-6d}{8}\right) = \cos i = -0.065$$

$$E_{y}\left(\frac{-5d}{8}\right) = \cos i = -0.19$$

$$E_{y}\left(\frac{-d}{2}\right) = \cos i = -0.58$$

$$E_{y}\left(\frac{-3d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{-3*3.8*10^{-6}}{8}\right)\right) = -0.99$$

$$E_{y}\left(\frac{-d}{4}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{-i.3.8*10^{-6}}{4}\right)\right) = -0.45$$

$$E_{y}\left(\frac{-d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{-i.3.8*10^{-6}}{8}\right)\right) = 0.52$$

$$E_{y}\left(0\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{3.8*10^{-6}}{8}\right)\right) = 0.52$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{3.8*10^{-6}}{8}\right)\right) = -0.45$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{3*3.8*10^{-6}}{8}\right)\right) = -0.45$$

$$E_{y}\left(\frac{3d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{3*3.8*10^{-6}}{8}\right)\right) = -0.99$$

$$E_{y}\left(\frac{d}{8}\right) = \cos\left(\frac{2.6\pi}{3.8*10^{-6}}*\left(\frac{3*3.8*10^{-6}}{8}\right)\right) = -0.99$$

$$E_{y}\left(\frac{d}{8}\right) = \cos i = -0.58$$

$$E_{y}\left(\frac{5d}{8}\right) = \cos i = -0.19$$

$$E_{y}\left(\frac{6d}{8}\right) = \cos i = -0.065$$

Рисунок 1.4 – Типичное распределение электрического поля мод пленочного оптического волновода

Расчет для т=3

$$E_{y}\left(\frac{-6d}{8}\right) = \frac{\frac{-6 \times 3.8 \times 10^{-6}}{8}}{\left|\frac{-6 \times 3.8 \times 10^{-6}}{8}\right|} \times \sin\left(\frac{3.4\pi}{2}\right) \times e^{-1.48 \times 10^{6} \times \left(\left|\frac{-6 \times 3.8 \times 10^{-6}}{8}\right| - \frac{3.8 \times 10^{-4}}{2}\right)} = 0.2$$

$$E_{y}\left(\frac{-5d}{8}\right) = \frac{\frac{-5 \times 3.8 \times 10^{-6}}{8}}{\left|\frac{-5 \times 3.8 \times 10^{-6}}{8}\right|} \times \sin\left(\frac{3.4\pi}{2}\right) \times e^{-1.48 \times 10^{6} \times \left(\left|\frac{-5 \times 3.8 \times 10^{-6}}{8}\right| - \frac{3.8 \times 10^{-4}}{2}\right)} = i.0.4$$

$$E_{y}\left(\frac{-d}{2}\right) = \frac{\frac{-3.8 \times 10^{-6}}{2}}{\left|\frac{-3.8 \times 10^{-6}}{2}\right|} \times \sin\left(\frac{3.4\pi}{2}\right) \times e^{-1.48 \times 10^{6} \times \left(\left|\frac{-3.8 \times 10^{-4}}{2}\right| - \frac{3.8 \times 10^{-4}}{2}\right)} = i.0.8$$

$$E_{y}\left(\frac{-3d}{8}\right) = \sin\left(\frac{3.4\pi}{3.8 \times 10^{-6}} \times \left(\frac{-3 \times 3.8 \times 10^{-6}}{8}\right)\right) = 0.76$$

$$E_{y}\left(\frac{-d}{8}\right) = \sin\left(\frac{3.4\pi}{3.8 \times 10^{-6}} \times \left(\frac{-3.8 \times 10^{-6}}{4}\right)\right) = -0.45$$

$$E_{y}\left(\frac{-d}{8}\right) = \sin\left(\frac{3.4\pi}{3.8 \times 10^{-6}} \times \left(\frac{-3.8 \times 10^{-6}}{8}\right)\right) = -0.97$$

$$E_{y}(0) = \sin\left(\frac{3.4\pi}{3.8 \times 10^{-6}} \times (0)\right) = 0$$

$$E_{y}\left(\frac{d}{8}\right) = \sin\left(\frac{3.4\pi}{3.8*10^{-6}} * \left(\frac{3.8*10^{-6}}{8}\right)\right) = 0.97$$

$$E_{y}\left(\frac{d}{4}\right) = \sin\left(\frac{3.4\pi}{3.8*10^{-6}} * \left(\frac{3.8*10^{-6}}{4}\right)\right) = 0.45$$

$$E_{y}\left(\frac{3d}{8}\right) = \sin\left(\frac{3.4\pi}{3.8*10^{-6}} * \left(\frac{3*3.8*10^{-6}}{8}\right)\right) = -0.76$$

$$E_{y}\left(\frac{d}{2}\right) = \frac{\frac{3.8*10^{-6}}{2}}{\left|\frac{3.8*10^{-6}}{2}\right|} * \sin\left(\frac{3.4\pi}{2}\right) * e^{-1.48*10^{6}*\left(\left|\frac{3.8*10^{-6}}{2}\right| - \frac{3.8*10^{-6}}{2}\right)\right)} = -0.8$$

$$E_{y}\left(\frac{5d}{8}\right) = \frac{\frac{5*3.8*10^{-6}}{8}}{\left|\frac{5*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{3.4\pi}{2}\right) * e^{-1.48*10^{6}*\left(\left|\frac{5*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)} = -0.4$$

$$E_{y}\left(\frac{6d}{8}\right) = \frac{\frac{6*3.8*10^{-6}}{8}}{\left|\frac{6*3.8*10^{-6}}{8}\right|} * \sin\left(\frac{3.4\pi}{2}\right) * e^{-1.48*10^{6}*\left(\left|\frac{6*3.8*10^{-6}}{8}\right| - \frac{3.8*10^{-6}}{2}\right)} = -0.2$$

Рисунок 1.5 – Типичное распределение электрического поля мод пленочного оптического волновода

II часть. Расчет полоскового направленного ответвителя. По предварительным данным параметров сред, используемых для изготовления направленного ответвителя, согласно вашему варианту из табл.2.1, а также параметров оптического излучения (табл.2.2.), рассчитать:

- 1. Поперечные размеры волноводов d_x и d_y. Заполнить табл.2.3. При расчетах воспользоваться результатами, а также дидактическими материалами из I части данного пособия.
- 2. Коэффициент связи между волноводами С. Заполнить табл.2.3.
- 3. Рассчитать нормированные зависимости уровней оптических мощностей на выходах направленного ответвителя от длины связи z между модами начиная от 0 мкм до (0.8/*C*) мкм с шагом (0.08/*C*) мкм. Заполнить табл.2.4 и нарисовать зависимости *P*₁/*P*₀ и *P*₂/*P*₀ от z.
- 4. Длину связи L между модами, при которой коэффициент деления по мощности соответствует заданной в табл.2.2 величине. Заполнить табл.2.3.
- 5. Длину связи между модами L₀/2, когда на выходе направленного ответвителя уровни оптической мощности равны (делитель мощности).

Нарисовать в поперечном сечении область связанных волноводов с указанием всех конструктивных размеров (см.рис.2.4).

\mathbf{n}_1	n ₂	n_0	2a	λ , мкм	m _y	m _x	α,%			
1,6	1,5	1,0	0,8 d _y	1,1	4	1	40			
Таблица 2.1 – Исходные данные.										

Параметр	d _x	dy	С	L	L ₀ /2
Ед. измерения	0,987 мкм	3,8 мкм	971,11 1/м	700 мкм	800 мкм

Таблица 2.2 – Рассчитанные параметры.

1. Исходя из данных I части, d_y=3,8 мкм.

$$2a = 0,8*d_{y}$$

2а = 0,8*3,8 мкм = 3,04 мкм

2. Найдем d_x, приняв V=*π*:

$$V = \frac{2\pi d_x}{\lambda} \sqrt{n_1^2 - n_2^2}, \text{ выразим } \mathbf{d}_x$$
$$d_x = \frac{V\lambda}{2\pi \sqrt{n_1^2 - n_2^2}}$$

$$d_x = \frac{\pi * 1.1 * 10^{-6}}{2\pi\sqrt{1,6^2 - 1,5^2}} = 0,987$$
 мкм

3. Найдем коэффициент связи между волноводами С:

$$C = \frac{2k_1^2 \gamma_{12} e^{-2\gamma_{12}a}}{\beta d_y (\gamma_{12}^2 + k_1^2)}$$

$$C = \frac{2*(9, 14*10^6)^2 * 1, 48*10^6 * e^{-1, \frac{48*10^6 * 0, 8*3, 8*10^{-6}}{\Box}2}}{8, 69*10^6 * 3, 2*10^{-6}*((1, 48*10^6)^2 + (9, 14*10^7)^2))} = 971, 11\frac{1}{M}$$

4. Рассчитаем нормированные зависимости уровней оптических мощностей на выходах направленного ответвителя от длины связи z между модами:

$$\frac{P_1}{P_0} = \cos^2(Cz)$$
(2.21)
$$\frac{P_2}{P_0} = \sin^2(Cz)$$
(2.22)

Z	0	$\frac{0.08}{C}$	$\frac{0.16}{C}$	$\frac{0.24}{C}$	$\frac{0.32}{C}$	$\frac{0.4}{C}$	$\frac{0.48}{C}$	$\frac{0.56}{C}$	$\frac{0.64}{C}$	$\frac{0.72}{C}$	$\frac{0.8}{C}$	$\frac{1}{C}$	$\frac{1,2}{C}$
P_{1}/P_{0}	1	0,99	0,97	0,94	0,9	0,85	0,79	0,72	0,64	0,56	0,48	0,3	0,13
P_2/P_0	0	0,00	0,03	0,06	0,1	0,15	0,21	0,28	0,36	0,43	0,51	0,71	0,87
		<u>ו</u>											

$$\frac{P_1}{P_0} = \cos^2(971.11 * 0) = i1$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11 * 0.08}{971.11} \right) = 0.99$$
$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11 * 0.16}{971.11} \right) = 0.97$$

$$\frac{P_1}{P_0} = \cos^2\left(\frac{971.11 * 0.24}{971.11}\right) = \overset{\circ}{\iota} 0.94$$

$$\frac{P_1}{P_0} = \cos^2\left(\frac{971.11 * 0.32}{971.11}\right) = \&0.9$$

$$\frac{P_1}{P_0} = \cos^2\left(\frac{971.11*0.4}{971.11}\right) = i0.85$$

$$\frac{P_1}{P_0} = \cos^2\left(\frac{971.11 * 0.48}{971.11}\right) = \&0.79$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11*0.56}{971.11} \right) = i0.72$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11*0.64}{971.11} \right) = i0.64$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11*0.72}{971.11} \right) = i0.56$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11*0.8}{971.11} \right) = i0.48$$

$$\frac{P_1}{P_0} = \cos^2 \left(\frac{971.11*1}{971.11} \right) = i0.3$$

$$\frac{P_1}{P_0} = \sin^2 \left(\frac{971.11*1.2}{971.11} \right) = i0.13$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.9}{971.11} \right) = i0.006$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.08}{971.11} \right) = i0.03$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.16}{971.11} \right) = i0.03$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.24}{971.11} \right) = i0.04$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.24}{971.11} \right) = i0.15$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.48}{971.11} \right) = i0.21$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.48}{971.11} \right) = i0.28$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11*0.48}{971.11} \right) = i0.28$$

$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11 * 0.72}{971.11} \right) = i \cdot 0.43$$
$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11 * 0.8}{971.11} \right) = i \cdot 0.51$$
$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11 * 1}{971.11} \right) = i \cdot 0.71$$
$$\frac{P_2}{P_0} = \sin^2 \left(\frac{971.11 * 1.2}{971.11} \right) = i \cdot 0.87$$

Рис. 2.1 Зависимости P_1/P_0 и P_2/P_0 от z.

5. Длина связи L между модами, при которой коэффициент деления по мощности соответствует заданной в табл.2.1 величине:

L = 700 мкм

 Длина связи между модами L₀/2, когда на выходе направленного ответвителя уровни оптической мощности равны (делитель мощности): L₀/2 = 800 мкм

ответвителя – а; распределение оптического поля – б.

III часть. Расчет характеристических параметров одномодовых оптических волокон.

Используя заданные параметры материала для сердцевины оптического волокна со ступенчатым профилем показателя преломления, согласно вашему варианту из табл.3.1 (состав стекла, коэффициенты Селмайера), а также радиуса сердцевины, согласно вашему варианту из табл.3.2, определить:

- 1. Показатель преломления для сердцевины волокна с помощью формулы Селмайера. Заполнить табл.3.3. Нарисовать зависимость показателя преломления от длины волны в диапазоне от 0,8 до 1,6 мкм с шагом 0,2 мкм.
- Групповой показатель преломления для сердцевины волокна.
 Заполнить табл.3.3. Нарисовать зависимость группового показателя преломления от длины волны в диапазоне от 0,8 до 1,6 мкм с шагом 0,2 мкм.
- Коэффициент удельной материальной дисперсии волокна. Заполнить табл.3.3. Нарисовать зависимость удельной материальной дисперсии волокна от длины волны (в единицах измерения пс/(нм*км)) в диапазоне от 0,8 до 1,6 мкм с шагом 0,2 мкм.
- Коэффициент удельной волноводной дисперсии волокна в предположении, что волокно работает в одномодовом режиме.
 Заполнить табл.3.3. Нарисовать зависимость удельной волноводной дисперсии волокна от длины волны (в ед. измерения пс/(нм*км)) в диапазоне от 0,8 до 1,6 мкм с шагом 0,2 мкм.

- 5. Коэффициент удельной хроматической дисперсии волокна. Заполнить табл.3.3. Нарисовать зависимость удельной хроматической дисперсии волокна от длины волны (в ед. измерения пс/(нм*км)) в диапазоне от 0,8 до 1,6 мкм с шагом 0,2 мкм.
- 6. Найти длину волны, при которой хроматическая дисперсия минимальная.

Материал	\mathbf{S}_1	S_2	S_3	λ1, мкм	λ2, мкм	λ3, мкм	а, мкм
$9.1\% P_2O_590.9\% SiO_2$	0,695	0,453	0,712	0,061	0,120	8,657	5

Решение:

Таблица 3.1 – Параметры материала сердцевины волокна.

Длина	0,8	1,0	1,2	1,4	1,6	1.8
волны,						
МКМ						
Параметры						
n	1.467	1.465	1.462	1.46	1.458	1.455
$N_{\Gamma P}$	1.481	1.478	1.476	1.476	1.478	1.479
D _м , пс/ (нм	-109.96	-40.91	-7.41	12.43	27.57	40.24
•км)						
D _в , пс/ (нм	-6.91	-8.64	-10.37	-12.1	-13.83	-15.56
•км)						
D _{XP} , пс/ (нм	-116.87	-49.55	-17.78	0.33	13.74	24.68
•км)						

Таблица 3.2 – Значения показателей преломления и дисперсий.

 Рассчитаем показатель преломления для следующих длин волн: 0,8; 1,0; 1,2; 1,4; 1,6; 1,8 мкм. По формуле Селмайера:

$$n(\lambda) = \sqrt{1 + \sum_{i=1}^{N} \frac{S_i \lambda^2}{\lambda^2 - \lambda_i^2}}$$

$$n(0,8) = \sqrt{1 + \sum_{i=1}^{N} \frac{S_i(0,8)^2}{(0,8)^2 - \lambda_i^2}} = \sqrt{1 + 0.699 + 0.463 - 0.0061} = 1.467$$

n (1,0) = $\sqrt{1 + 0.697 + 0.459 - 0.0096} = 1.465$
n (1,2) = $\sqrt{1 + 0.6968 + 0.457 - 0.0139} = 1.462$

$$n(1,4) = \sqrt{1+0.696+0.456-0.019} = 1.46$$

$$n(1,6) = \sqrt{1 + 0.696 + 0.455 - 0.025} = 1.458$$

Длина	0,8	1,0	1,2	1,4	1,6	1.8					
волны, мкм											
$S_1 \lambda^2$	0.699	0.697	0.6968	0.696	0.696	0.695					
$\overline{\lambda^2 - \lambda_1^2}$											
$S_2 \lambda^2$	0.463	0.459	0.457	0.456	0.455	0.455					
$\overline{\lambda^2 - \lambda_2^2}$											
$S_3 \lambda^2$	-0.0061	-0.0096	-0.0139	-0.019	-0.025	-0.032					
$\lambda^2 - \lambda_3^2$											
$n(\lambda)$	1.467	1.465	1.462	1.46	1.458	1.455					

 $n(1,8) = \sqrt{1+0.695+0.455-0.032} = 1.455$

Таблица 3.3 – Промежуточные расчёты.

Рисунок 3.1 График зависимости рассчитанного показателя преломления n от длины волны на интервале от 0,8 до 1,8 мкм

Длина волны,	0,8	1,0	1,2	1,4	1,6	1,8
МКМ						
$S_1 \lambda_1^2$	0.00638	0.0026	0.00125	0.00067	0.00039	0.00024
$\overline{(\lambda \dot{\boldsymbol{\iota}} \dot{\boldsymbol{\iota}} 2 - \lambda_1^2)^2 \dot{\boldsymbol{\iota}}}$						
$S_2 \lambda_2^2$	0.0166	0.00671	0.0032	0.00172	0.001	0.00062
$\overline{(\lambda \dot{\boldsymbol{\iota}} \dot{\boldsymbol{\iota}} 2 - \lambda_2^2)^2 \dot{\boldsymbol{\iota}}}$						
$S_3 \lambda_3^2$	0.00966	0.00975	0.00987	0.01	0.0101	0.0103
$\overline{(\lambda \dot{\boldsymbol{\iota}} \dot{\boldsymbol{\iota}} 2 - \lambda_3^2)^2 \dot{\boldsymbol{\iota}}}$						
$N_{ m rp}$	1.481	1.478	1.476	1.476	1.478	1.479

2. Нахождение группового показателя преломления для сердцевины волокна.

$$N_{IP} = n(\lambda) - \lambda \frac{dn(\lambda)}{d\lambda} = n(\lambda) + \lambda \frac{\lambda}{n(\lambda)} \sum_{i=1}^{N} ii$$

$$\frac{DR}{dn(\lambda)} = \frac{-\lambda}{n(\lambda)} \sum_{i=1}^{N} ii$$

$$N_{IP}(0.8) = 1.467 + \frac{0.8 * 0.8}{1.467} * i0.00966) = 1.481$$

$$N_{IP}(1.0) = 1.465 + \frac{1.0 * 1.0}{1.465} * i) = 1.478$$

$$N_{IP}(1.2) = 1.462 + \frac{1.2 * 1.2}{1.462} * i) = 1.476$$

$$N_{IP}(1.4) = 1.46 + \frac{1.4 * 1.4}{1.4} * i + 0.00172) + 0.01 = 1.476$$

$$N_{IP}(1.6) = 1.458 + \frac{1.4 * 1.4}{1.458} * i) = 1.478$$

$$N_{IP}(1.8) = 1.455 + \frac{1.8 * 1.8}{1.455} * i0.0103) = 1.479$$

Рисунок 3.2 - График зависимости группового показателя преломления от длины волны на интервале от 0,8 до 1,8 мкм.

3. Нахождение коэффициента удельной материальной дисперсии волокна.

$$D_{M} = \frac{\frac{-\lambda}{c_{0}} * 1}{n(\lambda)} * \left\{ \sum_{i=1}^{N} \left[S_{i} \frac{\lambda_{i}^{2} * 3\lambda^{2} + \lambda_{i}^{2}}{\left(\lambda^{2} - \lambda_{i}^{2}\right)^{3}} \right] - \left(\frac{dn(\lambda)}{d\lambda}\right)^{2} \right\},$$

с₀ – скорость света в свободном пространстве.

- $D_m(0.8) = i$ $D_m(1.0) = i$ $D_m(1.2) = i$ $D_m(1.4) = i$
- $D_m(1.6) =$

 $D_m(1.8) =$

Длина волны,	0,8	1,0	1,2	1,4	1,6	1.8
МКМ						
$S_{i} \frac{\lambda_{i}^{2} * 3 \lambda^{2} + \lambda_{i}^{2}}{\left(\lambda^{2} - \lambda_{i}^{2}\right)^{3}}$	0.0193	0.00785	0.0037	0.00203	0.00118	0.00074
$S_{i} \frac{\lambda_{i}^{2} * 3 \lambda^{2} + \lambda_{i}^{2}}{\left(\lambda^{2} - \lambda_{i}^{2}\right)^{3}}$	0.0515	0.0205	0.00975	0.00522	0.00304	0.00189
$S_{i} \frac{\lambda_{i}^{2} * 3 \lambda^{2} + \lambda_{i}^{2}}{\left(\lambda^{2} - \lambda_{i}^{2}\right)^{3}}$	- 0.00999	-0.0102	-0.0106	-0.0110	-0.0116	-0.0122
D _м пс/(нм*км)	-109.96	-40.91	-7.41	12.43	27.57	40.24

Таблица 3.5 – Промежуточные расчеты.

4. Нахождение коэффициента удельной волноводной дисперсии волокна в предположении, что волокно работает в одномодовом режиме.

$$D_B = \frac{-V^2 \lambda}{c_0 4 \pi^2 a^2}, V = 1, 6$$

 $D_{e}(0.8) = \left(\frac{-1.6^{2} * 0.8}{3 * 10^{8} * 4 \pi^{2} * 5^{2}}\right) * 10^{12} = -6.91$ $D_{e}(1.0) = \left(\frac{-1.6^{2} * 1}{3 * 10^{8} * 4 \pi^{2} * 5^{2}}\right) * 10^{12} = -8.64$ $D_{e}(1.2) = \left(\frac{-1.6^{2} * 1.2}{3 * 10^{8} * 4 \pi^{2} * 5^{2}}\right) * 10^{12} = -10.37$ $D_{e}(1.4) = \left(\frac{-1.6^{2} * 1.4}{3 * 10^{8} * 4 \pi^{2} * 5^{2}}\right) * 10^{12} = -12.1$ $D_{e}(1.6) = \left(\frac{-1.6^{2} * 1.6}{3 * 10^{8} * 4 \pi^{2} * 5^{2}}\right) * 10^{12} = -13.83$

$$D_{e}(1.8) = \left(\frac{-1.6^{2} * 1.8}{3 * 10^{8} * 4\pi^{2} * 5^{2}}\right) * 10^{12} = -15.56$$

5. Нахождение коэффициента удельной хроматической дисперсии волокна.

$$D_{xp} = D_M + D_B$$

 $D_{xp}(0.8) = 2-109.96-6.91 = -116.87$

 $D_{xp}(1.0) = -40.91 - 8.64 = -49.55$

 $D_{xp}(1.2) = i - 7.41 - 10.37 = -17.78$

 $D_{xp}(1.4) = 12.43 - 12.1 = 0.33$

 $D_{xp}(1.6) = 27.57 - 13.83 = 13.74$

 $D_{xp}(1.8) = i40.24 - 15.56 = 24.68$

 $\lambda_{min} = 1.38$ мкм

IV часть. Оценка искажения импульсов при распространении по оптическим волокнам.

Изучите конспект лекций, учебную литературу и с помощью методических указаний IV части выполните следующие пункты согласно вашему варианту задания. Все необходимые числовые значения параметров для расчёта приведены в табл.4.1, табл.4.2 и в Приложениях 1–5:

1. По заданным значениям гауссовского оптического импульса

(табл.4.1) рассчитать зависимость нормированных значений огибающей напряжённости электрического поля импульса от времени на входе оптического волокна Е (0, t). Заполнить табл.4.3. Нарисовать зависимость Е (0, t).

- 2. По заданному типу оптического волокна (табл.4.2 и Приложения 1– 5) найти дисперсионные параметры, затухание и рассчитать зависимость нормированных значений огибающей напряжённости электрического поля импульса от времени после распространения на расстояние L₁ и L₂. Заполнить табл.4.3. Нарисовать зависимости E (L₁, t) и E(L₂, t) на одном рисунке.
- 3. Рассчитать зависимость значения девиации частоты (в ГГц), несущей оптического импульса от времени на расстоянии L_2 . Заполнить табл.4.3. Нарисовать зависимость df(t). Схематически отобраѕить оптический импульс с девиацией частоты без сохранения масштаба.
- 4. Предположив, что по оптическому волокну передастся кодовая последовательность «101» в виде оптических импульсов гауссовой формы, прочем «1» соответствует гауссовом импульсу, а «0» отсутствию излучения, необходимо нарисовать на одном рисунке временную зависимость огибающих электрического поля этих импульсов после распространения на расстояние L₂. Китовый интервал последовательности импульсов принять равным 2T₀. Сделать вывод о возможности достоверного прима этой последовательности на расстоянии L₂.

Т _{0,} пс	λ, мкм	Тип ОВ рек.	L ₁ км	L ₂ км
		ITU-T		
10	1,465	G.656	30	60

Таблица 4.1 – Исходные данные.

t	-4T ₀	-7T ₀ /2	-3T ₀	$-5T_0/2$	-2T ₀	$-3T_0/2$	-T ₀	-T ₀ /2
E (0, t)	0,00033	0,0021	0,011	0,043	0,13	0,32	0,6	0,88
$E(L_1, t)$	0.042	0.084	0,14	0,24	0,37	0,51	0,64	0,74
$E(L_2,t)$	0,037	0,074	0,13	0,22	0,33	0,45	0,57	0,65

df, ГГц	-97,2	-85	-72,9	-60,7	-48,6	-36,4	-24,3	-12,1

t	0	T ₀ /2	T ₀	3T ₀ /2	2T ₀	5T ₀ /2	3T ₀	7T ₀ /2	4T ₀
E (0, t)	1	0,88	0,6	0,32	0,13	0,043	0,011	0,0021	0,00033
E (L ₁ ,	0,78	0,74	0,64	0,51	0,37	0,24	0,14	0,084	0,042
t)									
E (L ₂ ,	0,69	0,65	0,57	0,45	0,33	0,22	0,13	0,074	0,037
t)									
df,	0	12,1	24,3	36,4	48,6	60,7	72,9	85	97,2
ГГц									

Таблица 4.2. – Промежуточные расчёты.

1. Расчёт зависимости нормированных значений огибающей напряжённости электрического поля импульса от времени на входе оптического волокна Е (0, t). Заполнить табл.4.3. Нарисовать зависимость Е (0, t). $E[0, t] = e^{\frac{-t^2}{2T_0^2}}$

 $E(0, -4T_0) = e^{-iii}$

2. По заданному типу оптического волокна найдем дисперсионные параметры, затухание и рассчитаем зависимость нормированных значений огибающей напряженности электрического поля импульса от времени после распространения на расстоянии L1 и L2.

G.656

$$D = \left(\frac{4.68}{90}\right) * (1465 - 1460) + 4.6 = 4.86$$
$$|K_2| = \frac{|D| * \lambda}{2\pi * c}$$

с – скорость света

$$|K_2| = \frac{4,86*1465^2}{2\pi * 3*10^5} = 5,53$$

$$L_{d} = \frac{T_{0}^{2}}{|k_{2}|} = \frac{100}{5.53} = 18.08 \, \text{км}$$

Нормированное выражение напряженности электрического импульса:

$$|E(z,t)| = \frac{1}{\sqrt[4]{1 + (\frac{z}{L_D})}} * e^{\frac{-t^2}{2*T_0^2 \left(1 + \left(\frac{z}{L_D}\right)^2\right)}};$$

$$|E(z,t)| = \frac{1}{\sqrt[4]{1 + (\frac{30}{18,08})}} * e^{\frac{-(-4*10)^2}{2*10^2 \left(1 + \left(\frac{30}{18,08}\right)^2\right)}} = 6,59$$

3. Рассчитаем зависимость значения девиации частоты (в ГГц), несущей оптического импульса от времени на расстоянии L2. Заполним таблицу 4.2 и нарисуем зависимость df(t).

Рисунок 4.1 - Зависимость нормированной напряженности поля импульса от времени на входе оптического волокна и зависимость нормированной напряженности поля импульса от времени на расстояниях L₁ и L₂.

4. Рассчитаем зависимость значения девиации частоты несущей оптического импульса от времени на расстоянии *L*₂.

$$df = \frac{1}{2\pi} \cdot \frac{sgn(k_2)}{T_0^2} \cdot \frac{\frac{z}{L_D}}{1 + (\frac{z}{L_D})^2} \cdot t$$
, где знак волнового числа - $sgn(k_2) = -1 - i$

Внесём рассчитанные данные девиации в таблицу 4.3.

Пример расчёта для *L*=60км;

Рисунок - 4.2 – Зависимость *df*(t)

Рисунок 4.3 – Гауссовый оптический импульс после прохождения дисперсионной среды с положительной дисперсией

Допустим, что по оптическому волокну передаётся кодовая комбинация «101» в виде оптических импульсов гауссовой формы, для которой «1» соответствует гауссовому импульсу, а «0» отсутствию импульса. Расстояние распространения импульса L_2 , тактовый интервал 2 T_0 .

Исходя из данных диаграммы делаем вывод, что приём данной последовательности на расстоянии 60 км является достоверным.

Заключение

В данной курсовой работе мы закрепили знания по курсу: «Основы волноводной фотоники и оптоинформатики», решив четыре части данной работы по различным темам, а именно «Расчет параметров пленочного волновода», «Расчет полоскового направленного ответвителя», «Расчет характеристических параметров одномодовых оптических волокон» и «Оценка искажения импульсов при распространении по оптическим волокнам».

Список литературы

1. Варданян В.А. Физические основы оптики: учебное пособие. – Новосибирск: СибГУТИ, 2015. – 235 с.