Содержание

Введение

- 1. ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ УСТАНОВКИ ПРЕДВАРИТЕЛЬНОГО СБРОА ВОДЫ (УПСВ)
- 1.1 Общее Сведения
- УСТАНОВКА ПРЕДВАРИТЕЛЬНОГО СБРОСА ВОДЫ УПСВ
- 2. РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА УСТАНОВКИ ПРЕДВАРИТЕЛЬНОГО СБРОСА ВОДЫ (УПСВ)
- 2.1 МАТЕРИАЛЬНЫЙ БАЛАНС ПЕРВОЙ СТУПЕНИ СЕПАРАЦИИ
- 2.2 МАТЕРИАЛЬНЫЙ БАЛАНС ВТОРОЙ СТУПЕНИ
- 2.3 ОБЩИЙ МАТЕРИАЛЬНЫЙ БАЛАНС УСТАНОВКИ
- ЗАКЛЮЧЕНИЕ
- Список литературы

Введение

Технологические процессы сбора и подготовки углеводородного сырья заключается в последовательном изменении состояния продукции нефтяной скважины и отдельных ее составляющих (нефть и газ), завершающимся получением товарной продукции. Технологический процесс после разделения продукции скважины состоит из нефтяного и газового материальных потоков.

Основными технологическими установками входящими в состав системы сбора и подготовки являются:

дожимная насосная станция (ДНС);

дожимная насосная станция с установкой предварительного сброса воды (ДНС с УПСВ);

установка предварительного сброса воды (УПСВ);

установка подготовки нефти (УПН), которая входит в состав ЦПС.

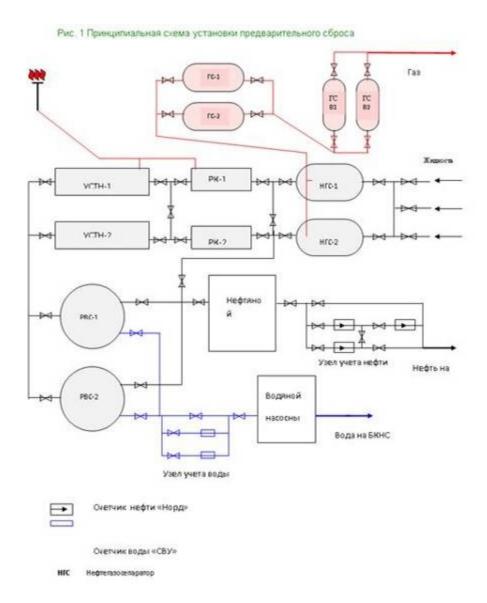
Целью курсового проекта является расчет материальных балансов технологической установки УПСВ.

1. Описание принципиальной технологической схемы установки предварительного сброса воды (УПСВ)

1.1 ОБЩЕЕ СВЕДЕНИЯ

Установка предварительного сброса воды УПСВ

Назначение


Установки предварительного сброса воды предназначены для дегазации нефти, отбора и очистки попутного газа, сброса пластовой воды под избыточным давлением.

Конструкция установок выполнена на базе отработанной конструкции нефтегазовых сепараторов со сбросом воды НГСВ. Установки представляют собой горизонтальные аппараты, снабженные технологическими штуцерами и штуцерами для КИПиА.

Внутри аппарата расположены: устройство ввода, успокоительная перегородка, секция коалесценции, струнный каплеотводник для очистки газа и секция сбора нефти.

Для улучшения разделения нефтегазовой смеси на входе НГСВ устанавливается депульсатор, обеспечивающий отвод, минуя аппарат, основного количества выделившегося газа, а также послойный ввод водонефтяной эмульсии и сбросной воды раздельными потоками в соответствии с их плотностью в среднюю и нижнюю отстойные зоны аппарата.

Схема установки УПСВ

НГС Нефтегазосепаратор

ГС Газовый сепаратор

ГСВ Газовый сепаратор вертикального типа

РВС Резервуар вертикальный стальной

УСТН Установка сепарационная трубная наклонная

РК Расширительная камера

С выкидной линии насосов нефть через фильтры поступает на узел учета нефти. Для учета откачиваемой жидкости узел учета нефти оборудуется счетчиками " Норд". Датчики показаний "Норд" выведены на щит КИПиА. После узла учета нефть по напорному нефтепроводу поступает на ЦППН.

Установки предварительного сброса воды предназначены для дегазации нефти, отбора и очистки попутного газа, сброса пластовой воды под избыточным давлением.

Конструкция установок выполнена на базе отработанной конструкции нефтегазовых сепараторов со сбросом воды НГСВ. Установки представляют собой горизонтальные аппараты, снабженные технологическими штуцерами и штуцерами для КИПиА.

Внутри аппарата расположены: устройство ввода, успокоительная перегородка, секция коалесценции, струнный каплеотбойникдля очистки газа и секция сбора нефти.

Для улучшения разделения нефтегазовой смеси на входе НГСВ устанавливается депульсатор, обеспечивающий отвод, минуя аппарат, основного количества выделившегося газа, а также послойный ввод водонефтяной эмульсии и сбросной воды раздельными потоками в соответствии с их плотностью в среднюю и нижнюю отстойные зоны аппарата.

Технические характеристики

Параметры:	УПСВ-500	УПСВ-1000	УПСВ-3000	УПСВ-10000	
Производительность по	500	1000	3000	10000	
жидкости, т/сут, не более					
Давление рабочее, МПа (кг/см ²)	0,6 (6,0); 1,0 (10,0); 1,6 (16,0)				

Способ нагрева эмульсии	Без подогрева (для легких нефтей) Со встроенным нагревателем (для средних нефтей) С автономным нагревателем (для тяжелых нефтей)			
Обводненность нефтяной эмульсии на входе, % мас., не более	90			
Обводненность нефтяной эмульсии на выходе, % мас., в пределах	3-5 (для легких нефтей плотностью до 850 кг/м³, с ориентир. временем пребывания в аппарате до 20 мин.) 5-8 (для средних нефтей плотностью от 850-870 кг/м³, с ориентир. временем пребывания в аппарате до 37 мин.) до 12 (для тяжелых нефтей плотностью от 870-895 кг/м³, с ориентир. временем пребывания в аппарате до 60 мин.)			
Содержание нефти в воде на выходе, % мас.	В соответствии с требованиями закзчика			
Содержание мех. примесей в воде на выходе, % мас.	В соответствии с требованиями закзчика			
Объем аппарата м ³	25	50	100	200

Производительность по жидкости указана для легкой нефти, для остальных типов уменьшается в зависимости от времени пребывания жидкости в аппарате.

Работа УПСВ

Газ из депульсатора подается в аппарат через штуцер ввода газа, проходит успокоительную перегородку, секцию коалесценции, где происходит дополнительное отделение капельной жидкости. Окончательная очистка газа производится струнным каплеотбойником.

Вода с незначительным содержанием нефти подается из депульсатора в нижнюю часть аппарата через штуцер входа воды. В нижней части аппарата вода окончательно отделяется от нефти, накапливается до перегородки секции сбора нефти и отводится через штуцер выхода воды.

Нефть с незначительным содержанием газа и воды подается в вводное устройство, где плавно распределяется по верхнему уровню жидкой фазы, не перемешивая поток с водой, проходит через успокоительную перегородку, секцию коалесценции, где происходит окончательное отделение остатков газа и воды, поступает в секцию сбора нефти и оттуда выводится из аппарата.

В зависимости от свойств нефтеводогазовой смеси допускается поставка установки УПСВ без депульсатора.

Для регионов Западной Сибири совместно с институтом СибНИИНП была специально разработана установка предварительного сброса воды (УПСВ).

Технологическая схема УПСВ разработана на основе технологического оборудования "УПСВ-200" производства ПГ "Генерация", конструкция которого дорабатывается согласно требованиям заказчика.

Кроме основного аппарата в составе УПСВ используется вспомогательное оборудование:

реагентный блок с дозировочными насосами производительностью до 10 л/час,

трубопроводная обвязка,

запорная арматура,

средства контроля и управления,

система безопасности,

кабельная продукция и т.д.

Выбор контрольно-измерительных приборов и средств автоматики производиться специалистами КИПиА ПГ "Генерация" и согласовывается с заказчиком.

Описание технологии и оборудования УПСВ для регионов Западной Сибири

Предлагаемая установка предварительного сброса воды (УПСВ) разработана на основании исходных материалов, полученных от предполагаемого заказчика. Она предполагает использование оборудования, выпускаемого ПГ "Генерация", а также существующего технологического

оборудования имеющегося в распоряжении заказчика.

УПСВ положены технические технологии разработанные СибНИИНП для организации предварительного сброса воды в системах сбора на месторождениях Западной Сибири в газонасыщенном состоянии при естественной температуре поступающего По представленной информации естественная температура поступающего на УПСВ сырья в течение года изменяется от +24 до +27°C. Такая температура с использованием де-эмульгатора достаточна для предварительного разделения эмульсии, образуемой нефтью. Учитывая что с ростом обводненности температура поступающего на УПСВ сырья будет расти, применение в составе УПСВ нагревателей нецелесообразно. Это повышает безопасность и надежность УПСВ, упрощает обслуживание, снижает затраты. Кроме того, проблема солеотложений, снимается возникающая при нагревании высокообводненных эмульсий.

Водная фаза содержит солеобразующие ионы (кальция, бикарбоната), что характерно для попутно добываемых вод Западно-Сибирского региона.

Эффективность работы установок УПСВ во многом зависит от свойств поступающей водонефтяной смеси, главным образом, от ее устойчивости.

Осуществление предварительного сброса воды возможно производить на ДНС и ЦПС. Обработка нефти на ЦПС зачастую осуществляется после полного разгазирования, имеет ряд преимуществ.

Существуют два различных варианта осуществления процесса сброса воды на ДНС в газонасыщенном состоянии:

• первый вариант, когда разделение газовой, нефтяной и водной фаз производится в одном аппарате (трехфазном сепараторе). Данный вариант применяется в том случае, если не предъявляются повышенные требования к качеству выходящих с установки воды, нефти и газа, а также при небольшой

(до 10 тыс. м²/сут.) производительности УПСВ;

• во втором варианте разделение фаз осуществляется последовательно в разных аппаратах. Сначала в нефтегазовом сепараторе от жидкости отделяется свободный газ, затем жидкость направляется в аппарат водоотделитель (отстойник), где происходит ее разделение на нефтяную и водную фазы. Данный вариант позволяет обеспечить получение нефти, содержащей до 5% воды, и воды,

содержание нефтепродуктов в которой составляет 20-50 мг/л, при производительности УПСВ 10 тыс. $\text{м}^2/\text{сут.}$ и выше.

В качестве водоотделителя (отстойника) предлагается использовать аппараты УПСВ объемом 200 м², конструкция которых предусматривает разделение жидкостей за счет разностей плотностей и интенсификации процесса при использовании коалесцирующих элементов, выполненных в виде пакетов и пластин из нержавеющей стали (рис. 1).

Уровень раздела фаз "нефть-вода" в УПСВ поддерживается на необходимой высоте при помощи регулятора уровня и клапана, установленного на линии выхода воды из аппарата.

Давление в УПСВ поддерживается при помощи клапана, установленного на линии вывода нефти.

Обезвоженная нефть из отстойников водоотделителей (УПСВ) подается на насосы внешней откачки или в имеющиеся резервуары.

С целью повышения эффективности работы УПСВ предлагается применение специальной технологии дозирования деэмульгаторов, предусматривающей обработку сырой нефти, содержание воды в которой превышает 60 %, т.е. являющейся, по сути, эмульсией типа "нефть в воде".

Сущность технологии дозирования деэмульгаторов в высоко обводненную нефть, представляющей собой эмульсию типа "нефть в воде",

состоит в следующем:

после выкида насоса внешней откачки ДНС до узла учета отбирается часть нефти, которая по самостоятельному трубопроводу возвращается в поток газожидкостной смеси перед УПОГ;

в этот трубопровод при помощи дозирующего насоса блока реагентного хозяйства (БРХ) подается реагент - деэмульгатор в товарной форме;

далее при совместном движении с возвращаемой нефтью деэмульгатор растворяется в ней и уже в виде раствора попадает в сырье.

Такой способ введения деэмульгатора в высоко обводненную нефть по сравнению с подачей его в товарной форме, т.е. в концентрированном виде, позволяет избежать прямого попадания деэмульгатора в водную фазу, когда он не доходит до эмульсии, а сбрасывается с водой из отстойника, не выполняя своих функций, что приводит к перерасходу реагента и ухудшению качества нефти и воды.

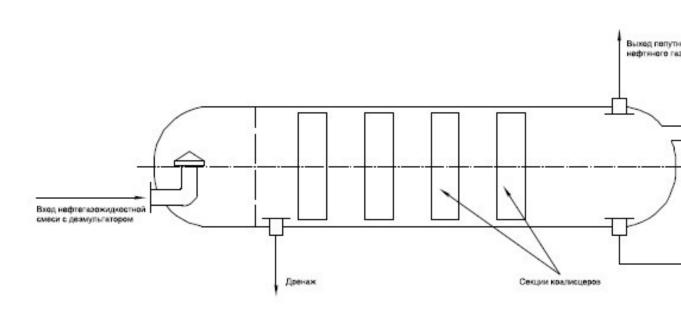


Рис. 1. Принципиальная схема аппарата-водоотделителя УПСВ

При реализации данной технологии следует придерживаться рекомендаций РД 29-0148070-225-88Р "Технология подготовки нефти с применением отечественных деэмульгаторов для месторождений Западной Сибири".

Прежде всего, диаметр трубопровода, по которому транспортируется нефтереагентная смесь от БРХ к точке подачи перед УПОГ, должен быть выбран таким, чтобы скорость движения жидкости в нем была более 1,5 м/сек., а концентрация получаемого при этом раствора реагента 0,2-0,5%.

При производительности УПСВ 10-15 тыс. $\rm m^2/\rm cyr$. может быть использована труба для нефтереагентопровода с внутренним диаметром ~ 25 мм.

Преимущество вышеуказанной технологии дозирования деэмульгатора заключаются в том, что подача в виде разбавленного раствора по сравнению с вводом в концентрированном виде позволяет обеспечивать быстрое распределение его в объеме эмульсии и срабатывание.

Попутно добываемая вода, отделяющаяся на УПСВ, кроме растворенных солей содержит растворенный газ в количестве около 90 л/м². Состоит этот газ преимущественно из углеводородных компонентов (метана). В этой связи в соответствии с п.2.48. ВНТП 2-85 "Нормы технологического проектирования объектов сбора, транспорта, подготовки нефти, газа и воды нефтяных месторождений" такая вода не может подаваться на насосы БКНС без предварительного разгазирования. Для этих целей на БКНС необходима установка "буфер дегазатора".

Таким образом, предлагаемая технологическая схема **УПСВ имеет следующие преимущества**:

• использование существующего технологического и вспомогательного оборудования позволяет снизить затраты на оборудование

и строительство;

- осуществление процесса при естественной температуре поступающего сырья без использования в технологии нагревателей повышает безопасность и надежность установки УПСВ, упрощает ее обслуживание, снижает стоимость, уменьшает проблемы солеотложения;
- разделение нефти и воды в газонасыщенном состоянии при давлении первой ступени сепарации за счет присутствия в нефти растворенного газа снижает ее плотность и вязкость, позволяет повысить скорость расслоения фаз, качество получаемых нефти и воды;
- организация разделения газожидкостной смеси поэтапно (вначале отделяется газ в сепараторах первой ступени или на УПОГ, затем в отстойниках разделяются нефть и вода) позволяет получить на каждом этапе более полное и качественное разделение фаз газа, нефти и воды;
- применение специальной технологии дозирования деэмульгатора на вход в установку УПСВ в виде раствора реагента в нефти обеспечивает быстрое и наиболее полное использование реагента, исключает непосредственное его попадание в водную фазу, где деэмульгатор не может проявлять свою деэмульгирующую активность. Это особенно важно в данном случае при обработке высокообводненных нефтей, когда необходимо разделить эмульсию с содержанием воды 60% и более, т.е. эмульсию типа "нефть в воде";
- отсутствие в технологической схеме УПСВ насосов и участков с большими перепадами давления исключает передиспергирование обрабатываемой эмульсии, обеспечивая таким образом быстрое и полное разделение фаз;
- применение в отстойниках специальных секций коалесценции частиц дисперсной фазы, выполненных в виде пакетов пластин из

нержавеющей стали, также способствует повышению качества разделения нефти и воды;

• система контроля и управления УПСВ обеспечивает автоматический контроль и поддержание заданного режима работы оборудования, предупредительную и аварийную сигнализацию, противоаварийную защиту установки, автоматическое ведение журнала событий.

Технические характеристики

Производительность: м³/сут (м³/ч)	10000 - 15000 (416,6 - 625)
Время пребывания жидкости в аппарате, мин	37,2 - 46,8
Скорость горизонтального движения жидкости в секции	1,09 x 10 ⁻²
коалесценции, м/с	
Время осаждения капель воды в нефтяном слое секции	d 200 мк - 2,45 мин. d 150 мк - 4,35
коалесценции в расчетном зазоре между листами, диаметром	мин. d 100 мк - 9,87 мин.
В нефтяном слое осядут капли воды диаметром	d 200 мк и более - 100 % d 50 мк - 46
	%
Время всплытия капель нефти в водяном слое секции	d 100 мк - 1,1 мин. d 50 мк - 4,3 мин.
коалесценции в расчетном зазоре между листами, диаметром:	d 25 мк - 17,5 мин.
В водяном слое всплывут капли нефти диаметром	d 25 мк и более - 100 % d 10 мк - 17
	%
Масса УПСВ - 1 шт. /2200 м ³	32 500 кг

2. РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА УСТАНОВКИ ПРЕДВАРИТЕЛЬНОГО СБРОСА ВОДЫ (УПСВ)

Исходные данные для расчета

Годовая производительность установки - 1000000 тонн/год;

Годовая продолжительность - 350 дней;

Обводненность сырой нефти - 65% мас.;

Содержание воды в нефти на выходе из установки - 0,25% мас.;

Содержание углеводородов в товарной воде - 0,1%;

Давление первой стадии сепарации - 4 МПа;

Температура первой стадии сепарации - 15 °C;

Давление стадии оттаивания - 4 МПа;

Температура стадии оттаивания - 50 °C;

Давление второй стадии сепарации - 1 МПа;

Температура второй стадии сепарации - 50 °C.

Компонентный состав нефти приведен в табл. 2.1.

Таблица 3.1. Компонентный состав нефти

Компо	CO_2	N ₂	CH ₄	C_2H_6	C ₃ H	i-	H-	i-	н-С ₅ Н ₁₂	C ₆ H ₁₄ +	Итого
-нент					8	C_4H_{10}	C_4H_{10}	C_5H_{12}			
%	0,25	0,24	28,17	1,64	1,45	1,11	2,75	1,29	1,95	61,15	100,00
мол.											

2.1 МАТЕРИАЛЬНЫЙ БАЛАНС ПЕРВОЙ СТУПЕНИ СЕПАРАЦИИ

Технологией подготовки нефти предусмотрено, что термодинамические параметры работы рассматриваемого блока соответствуют абсолютному давлению и температуре, равных соответственно:

$$P = 4 \text{ M}\Pi \text{a}$$
; $t = 15 \, {}^{0}\text{C}$.

Расчеты разгазирования нефти в сепараторах при небольших давлениях (0,4 - 0,9 МПа) с достаточной для практических целей точностью можно производить по закону Рауля-Дальтона [4]:

$$y'_{i} = K_{i}x'_{i}$$
, (2.1)

где $y_i^{'}$ - мольная доля і-го компонента в образовавшейся газовой фазе, находящейся в равновесии с жидким остатком.; $x_i^{'}$ - мольная доля этого же компонента в жидком остатке; K_i - константа фазового равновесия і-го компонента при условиях сепарации (в рассматриваемом случае при давлении P = 4 МПа и температуре t = 15 0 C).

Для определения покомпонентного состава образовавшейся газовой (паровой) фазы используется уравнение:

$$y_i' = \frac{z_i' K_i}{1 + (K_i - 1)N^{-1}}, (2.2)$$

где $z_{i}^{'}$ - мольная доля і-го компонента в исходной эмульсии; $N^{'}$ -

 $\sum_{i=1}^{n} y_{i}^{'} = 1$ мольная доля отгона. Поскольку , то по уравнению (2.2) получим:

$$\sum_{i=1}^{n} \frac{z_{i}'K_{i}}{1 + (K_{i} - 1)N'} = 1$$
 (2.3)

Уравнение (3.3) используется для определения методом последовательного приближения мольной доли отгона N, при заданных составе исходной смеси z_i , давлении и температуре сепарации.

При расходе нефтяной эмульсии G_9 - 1000000 тонн/год часовая

производительность установки составит:

$$\Pi = \frac{G_9}{8400} = \frac{1000000}{8400} = 119,04$$
 _{T/Y.}

Содержание углеводородов в нефтяной эмульсии и константы фазового равновесия (K_i) с учетом условий сепарации приведены в табл.2.2.

Таблица 2.2.Исходные данные для расчета

№ п/п	Компонент	Мольная доля компонента		
	смеси	, Z;		
		в нефти (z_i)		
		Молекулярная масса		
		компонента (M _i),		
		кг/кмольК _і		
1	CO ₂	0,25	44	44,8
2	N_2	0,24	28	126,8
3	CH ₄	28,17	16	55,1
4	C_2H_6	1,64	30	8,38
5	C_3H_8	1,45	44	1,83
6	изо-С ₄ Н ₁₀	1,11	58	0,6
7	н-С ₄ Н ₁₀	2,75	58	0,86
8	изо-С ₅ Н ₁₂	1,29	72	0,12
9	н-С ₅ Н ₁₂	1,95	72	0,16
10	$C_6H_{14}+$	61,15	210	0,033
	Σ	$z_i' = 000$		

Составляем уравнения мольных концентраций для каждого компонента в газовой фазе в расчете на 100 молей нефти.

$$y_{1}' = \frac{0,25.44,8}{100 + (44,8 - 1).31,69} = 0,007$$

$$y_{2}' = \frac{0,24.126,8}{100 + (126,8 - 1).31,69} = 0,007$$

$$y_{3}' = \frac{28,17.55,1}{100 + (55,1 - 1).31,69} = 0,855$$

$$y_{4}' = \frac{1,64 \cdot 8,38}{100 + (8,38 - 1) \cdot 31,69} = 0,041$$

$$y_{5}' = \frac{1,45 \cdot 1,83}{100 + (1,83 - 1) \cdot 31,69} = 0,021$$

$$y_{6}' = \frac{1,11 \cdot 0,6}{100 + (0,6 - 1) \cdot 31,69} = 0,007$$

$$y_{7}' = \frac{2,75 \cdot 0,86}{100 + (0,86 - 1) \cdot 31,69} = 0,024$$

$$y_{8}' = \frac{1,29 \cdot 0,12}{100 + (0,12 - 1) \cdot 31,69} = 0,002$$

$$y_{9}' = \frac{1,95 \cdot 0,16}{100 + (0,16 - 1) \cdot 31,69} = 0,004$$

$$y_{10}' = \frac{61,15 \cdot 0,033}{100 + (0,033 - 1) \cdot 31,69} = 0,029$$

Путём подбора определим такую величину $N^{'}$, при которой выполнится условие:

$$\sum_{i=1}^{n} y_{i}' = 1$$

Подбор величины N приводится в табл. 2.3.

Таблица 2.3. Определение мольной доли отгона N

Компонент смеси	N' = 32.6 N' =		
	N' = 32,6 N' = 31,69 N' = 30,6		
CO_2	0,007	0,001	0,007
Азот N ₂	0,007	0,022	0,007
Метан СН ₄	0,832	0,820	0,884
Этан С ₂ Н ₆	0,040	0,038	0,042
Пропан С ₃ Н ₈	0,020	0,053	0,021
Изобутан изо-С ₄ Н ₁₀	0,007	0,010	0,007
Н-бутан н-С ₄ Н ₁₀	0,024	0,017	0,024
Изопентан изо-С ₅ Н ₁₂	0,002	0,003	0,002
H-пентан н-С ₅ H ₁₂	0,004	0,004	0,004
$C_6H_{14} +$	0,029	0,030	0,028
ΣY_i	0,977	1,000	1,030

Расчеты показали, что из 100 молей сырой нефти в процессе сепарации выделяется 31,69 молей газа. Составим материальный баланс сепарации в молях на 100 молей сырой нефти. Расчёт приведён в табл.2.4.

Таблица 2.4.Мольный баланс процесса сепарации первой ступени

Компонент смеси	Молярный состав сырой нефти (z' _i), %	Газ из сепарато	pa	Нефть из сепаратора моли $(z_i^1 - N_0^1)$	Мольный состав нефти из блока сепараторов $x'_i = (z'_i - N_0^r_i).100, \% \Sigma$ $(z'_i - N_0^r_i)$
		Молярная концентрация (у' _i)	Моли $N_{0i}^z = N' \cdot y_i'$		
CO ₂	0,25	0,007	0,238	0,011	0,017
N_2	0,24	0,007	0,236	0,004	0,006
CH ₄	28,17	0,855	27,11	1,061	1,55
C_2H_6	1,64	0,041	1,304	0,335	0,491
C_3H_8	1,45	0,021	0,666	0,784	1,15
изо-С ₄ Н ₁₀	1,11	0,007	0,242	0,868	1,27
н-С ₄ Н ₁₀	2,75	0,025	0,784	1,966	2,88
изо-С ₅ Н ₁₂	1,29	0,002	0,068	1,222	1,79
н-С ₅ Н ₁₂	1,95	0,004	0,135	1,815	2,66
$C_6H_{14}+$	61,15	0,029	0,922	60,2	88, 19
Итого	100	1,00047	31,70496	68,29504	100,00000

Баланс по массе, в расчете на 100 молей сырой нефти приведён в табл.

Таблица 2.5. Массовый баланс процесса сепарации первой ступени

Компонент смеси Молярный состав сырой нефти ($z_i^{z_i}$), %Массовый состав сырой нефти

 $\mathbf{M_{i}}^{\mathbf{c}} = \mathbf{Z}_{i}^{'}$ $\mathbf{M_{i}}$ Массовый состав газа из сепаратора

2.5.

 $M_i^r = N_0^r$ і M_i Массовый состав нефти из сепаратора

 $M_i^{\text{H}} = M_i^{\text{C}} - M_i^{\text{T}}$ Масса выделившегося газа, относительно сырой нефти

$\frac{1}{1}$ - $\frac{1}{1}$ - $\frac{1}{1}$ - $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	са выделивше	гося газа, относител	ьно сырои нефти		
$R_{i}^{r}=100 \cdot M_{i}^{r}/$					
M _i ^c , %					
CO_2	0,25		10,49502763	0,504972373	95,40934207
		7			
		⁴ i			
		11			
N ₂	0,24	6,72	6,607671175	0,112328825	98,32844011
CH ₄	28,17	450,72	433,7511998	16,96880021	96,23517922
C_2H_6	1,64	49,2	39,13371715	10,06628285	79,54007551
C ₃ H ₈	1,45	63,8	29,29418183	34,50581817	45,91564551
изо-С ₄ Н ₁₀	1,11	64,38	14,01815446	50,36184554	21,77408273
н-С ₄ Н ₁₀	2,75	159,5	45,48726081	114,0127392	28,51865882
изо-С ₅ Н ₁₂	1,29	92,88	4,897938563	87,98206144	5,273404999
н-С ₅ Н ₁₂	1,95	140,4	9,701284812	130,6987152	6,909747017
C ₆ H ₁₄ +	61,15	12841,5	193,6285251	12647,87147	1,507834172
Итого	100	$\Sigma M_i^c = 13880,1$	$\Sigma M_{i}^{r} = 787,01$	$\Sigma M_{i}^{H}=13093,08$	$R_{cm}^{r} = 5,67$

Средняя молекулярная масса газа:

$$M_{cp}^{\Gamma} = \sum M_i^{\Gamma} / \sum N_0^{\Gamma} M_{cp}^{\Gamma} = 787,01/31,69 = 24,82$$

Плотность газа:

$$\rho_{CP} = \frac{M_{CP}}{22.4} \cdot \frac{T_0 \cdot P}{T \cdot P_0} = \frac{24.82 \cdot 273 \cdot 4}{22.4 \cdot 293 \cdot 0.1} = 9.98$$

$$\kappa = \frac{M_{CP}}{22.4} \cdot \frac{T_0 \cdot P}{T \cdot P_0} = \frac{24.82 \cdot 273 \cdot 4}{22.4 \cdot 293 \cdot 0.1} = 9.98$$

Плотность газа при нормальных условиях (атмосферном давлении и температуре $0^{\circ}C$):

$$\rho_{CP} = \frac{M_{CP}}{22,4} = \frac{24,82}{22,4} = 1,11$$
_{K2/M}

Таблица 2.6.

Характеристика газа, выделяющегося в сепараторе

Компонент	Молярная концентрация	Молекул ярная	Массовый состав $[N_0^{r_i}/\Sigma N_0^{r_i}]$. $M_i^{-1}00$, % M_{cp}^{r}	Содержание тяжёлых углеводородов $[N_0^r]/\sum N_0^r]$. M_i
	$N_0^{r_i}/\sum N_0^{r_i}$	масса (M _i)		$\rho_{cp}^{-1}0^3$, r/m ³ M_{cp}^{-r}
CO_2	0,007	44	1,333	
N ₂	0,007	28	0,839	
CH ₄	0,855	16	55,113	
C_2H_6	0,0411	30	4,972	
C_3H_8	0,0210	44	3,722	371,64
изо-С ₄ Н ₁₀	0,008	58	1,781	177,84
н-С ₄ Н ₁₀	0,0247	58	5,780	577,08
изо-С ₅ Н ₁₂	0,00214	72	0,622	62,138
н-С ₅ Н ₁₂	0,0042	72	1,232	123,08
C ₆ H ₁₄ +	0,029	210	24,602	2456,48
Итого	1		100	3768,26

В блоке сепарации от сырой нефти отделяется только газ. Исходя из этого, составим материальный баланс блока сепарации с учётом обводненности нефти.

Сырая нефть имеет обводненность 65% масс. Количество безводной нефти в этом потоке составляет: $Q_{\rm H}$ = 95,24 т/ч.

Газ будет отделяться от нефти с производительностью:

$$Q_{\Gamma} = R_{cM}^{3}$$

$$^{\scriptscriptstyle{\Gamma}}$$
. $Q_{\scriptscriptstyle{H}}$
$$Q_{\scriptscriptstyle{\Gamma}} = 0,0567.95,24 = 5,40 \text{ T/y.}$$

$$Q_{\scriptscriptstyle{H}}^{\scriptscriptstyle{Ceff}} = Q_{\scriptscriptstyle{H}} - Q_{\scriptscriptstyle{\Gamma}} = 95,24 - 5,40 = 89,838 \text{ T/y,}$$

$$Q^{\scriptscriptstyle{Ceff}} = Q_{\scriptscriptstyle{H}}^{\scriptscriptstyle{Ceff}} + Q_{\scriptscriptstyle{BOZIM}} = 89,838 + 23,81 = 113,647 \text{ T/y.}$$

Правильность расчёта материального баланса определится выполнением условия:

$$\begin{split} & \sum Q^{\text{70 cen}} = \sum Q^{\text{100c,10 cen}}; \\ & \sum Q^{\text{70 cen}} = Q = 33,39 \text{ T/y}; \\ & \sum Q^{\text{100c,10 cen}} = Q^{\text{cen}} + Q_{\text{r}}; \\ & Q^{\text{cen}} + Q_{\text{r}} = 30,73 + 2,66 = 33,39 \text{ T/y}. \end{split}$$

Условие выполняется.

Данные по расчету блока сепарации первой ступени сводим в табл. 2.7.

Таблица 2.7. Материальный баланс сепарации первой ступени

	Приход			Расход			
	%масс	т/ч	т/г		%масс	т/ч	T/Γ
Эмульсия				Эмульсия	95,464		
в том числе:				в том числе:			
нефть	80,0	95,2	800000,0	нефть	79,050	89,84	754639,2
вода	20,0	23,8	200000,0	вода	20,950	23,81	200000,0
				Всего	100,0	113,65	954639,2
ИТОГО	100,0	119,1	1000000,0	Газ	4,536	5,40	45360,8
				ИТОГО	100,0	119,05	1000000,0

2.2 МАТЕРИАЛЬНЫЙ БАЛАНС ВТОРОЙ СТУПЕНИ

Термодинамические параметры работы рассматриваемого блока равны: $P=1\ M\Pi a;\ t=50^{0}C.$

Содержание углеводородов в нефтяной эмульсии и константы фазового равновесия (K_i) с учетом условий сепарации приведены в табл. 2.8.

Таблица 2.8.Исходные данные для расчета

№ п/п	Компонент	Мольная доля компонента		
	смеси	в нефти (z_i)		
		Молекулярная масса		
		компонента (M _i),		
		кг/кмольК _і		
1	CO ₂	0,25	44	568,9
2	N_2	0,24	28	639,2
3	CH ₄	28,17	16	313,7
4	C_2H_6	1,64	30	60,11
5	C_3H_8	1,45	44	16,99
6	изо-С ₄ Н ₁₀	1,11	58	8,52
7	н-С ₄ Н ₁₀	2,75	58	6,3
8	изо-С ₅ Н ₁₂	1,29	72	2,022
9	н-С ₅ Н ₁₂	1,95	72	1,571
10	$C_6H_{14}+$	61,15	210	0,533
	Σ	100,00	~	-

Составляем уравнения мольных концентраций для каждого компонента в газовой фазе в расчете на 100 молей нефти.

$$y_1' = \frac{0.25 \cdot 568.9}{100 + (568.9 - 1) \cdot 78.9} = 0.003$$

$$y_{2}' = \frac{0,24 \cdot 639,2}{100 + (639,2 - 1) \cdot 78,9} = 0,003$$

$$y_{3}' = \frac{28,14 \cdot 313,7}{100 + (313,7 - 1) \cdot 78,9} = 0,357$$

$$y_{4}' = \frac{1,64 \cdot 60,11}{100 + (60,11 - 1) \cdot 78,9} = 0,020$$

$$y_{5}' = \frac{1,45 \cdot 16,99}{100 + (16,99 - 1) \cdot 78,9} = 0,018$$

$$y_{6}' = \frac{1,11 \cdot 8,52}{100 + (8,52 - 1) \cdot 78,9} = 0,014$$

$$y_{7}' = \frac{2,75 \cdot 6,3}{100 + (6,37 - 1) \cdot 78,9} = 0,033$$

$$y_{8}' = \frac{1,29 \cdot 2,022}{100 + (2,022 - 1) \cdot 78,9} = 0,014$$

$$y_{9}' = \frac{1,95 \cdot 1,571}{100 + (1,571 - 1) \cdot 78,9} = 0,021$$

$$y_{10}' = \frac{61,15 \cdot 0,0533}{100 + (0,533 - 1) \cdot 78,9} = 0,516$$

Путём подбора определим такую величину $N^{'}$, при которой выполнится условие:

$$\sum_{i=1}^{n} y_{i}' = 1$$

Подбор величины N приводится в табл. 2.9.

Таблица 2.9. Определение мольной доли отгона N

Компонент смеси	N' = 78.9 N' = 80	
CO_2	0,003	0,003
Азот N ₂	0,003	0,002
Метан СН4	0,357	0,351
Этан С ₂ Н ₆	0,020	0,020
Пропан С ₃ Н ₈	0,018	0,017
Изобутан изо- C_4H_{10}	0,014	0,013

H-бутан н-С ₄ H ₁₀	0,033	0,033
Изопентан изо-C ₅ H ₁₂	0,014	0,014
H-пентан н-C ₅ H ₁₂	0,021	0,021
Гексан и выше C ₆ H ₁₄ +	0,516	0,520
ΣY_i	1,000	0,998

Расчеты показали, что из 100 молей сырой нефти в процессе сепарации выделяется 78,9 молей газа. Составим материальный баланс сепарации в молях на 100 молей сырой нефти. Расчёт приведён в табл.2.10.

Таблица 2.10.Мольный баланс процесса сепарации второй ступени

Компонент смеси	Молярный состав сырой нефти (z_i) , %			Нефть из сепаратора моли $(z'_i, N_0^r_i)$	Мольный состав нефти из блока сепараторов $x'_i = (z'_i - N_0^r_i).100, \% \Sigma (z'_i - N_0^r_i)$
Молярная н					
CO_2	0,25	0,0032	0,2499	0,0001	0,0006
N_2	0,24	0,0030	0,2399	0,0001	0,0005
CH ₄	28,17	0,3567	28,1460	0,0240	0,1139
C_2H_6	1,64	0,0207	1,6327	0,0073	0,0345
C_3H_8	1,45	0,0181	1,4275	0,0225	0,1067
изо-С ₄ Н ₁₀	1,11	0,0136	1,0762	0,0338	0,1604
н-С ₄ Н ₁₀	2,75	0,0334	2,6380	0,1120	0,5316
изо-С ₅ Н ₁₂	1,29	0,0144	1,1393	0,1507	0,7153
н-С ₅ Н ₁₂	1,95	0,0211	1,6663	0,2837	1,3466
$C_6H_{14}+$	61,15	0,5161	40,7194	20,4306	96,9900
Итого	100,00	1,000	$\Sigma N_0^r \approx 78,935$	21,06	100,00

Баланс по массе, в расчете на 100 молей сырой нефти приведён в табл. 2.11.

Таблица 2.11.Массовый баланс процесса сепарации второй ступени

Компонент смеси Молярный состав сырой нефти ($z_i^{'}$), %Массовый состав сырой нефти $M_i^{c} = z_i^{'} M_i$ Массовый состав газа из сепаратора

 $M_{i}^{r} = N_{0}^{r}_{i} M_{i}$ Массовый состав нефти из сепаратора

 $M_i{}^{\scriptscriptstyle \rm H}\!\!=M_i{}^{\scriptscriptstyle \rm C}$ - $M_i{}^{\scriptscriptstyle \rm T}\!Macca$ выделившегося газа, относительно сырой нефти

$R_{i}^{r}=100 \cdot M_{i}^{r}/$					
M _i ^c , %					
CO ₂	0,250		10,995	0,005	99,953
		Z _i 11,00			
N ₂	0,240	6,720	6,717	0,003	99,958
CH ₄	28,170	450,720	450,336	0,384	99,915
C_2H_6	1,640	49, 200	48,982	0,218	99,557
C ₃ H ₈	1,450	63,800	62,811	0,989	98,450
изо-С ₄ Н ₁₀	1,110	64,380	62,421	1,959	96,957
н-С ₄ Н ₁₀	2,750	159,500	153,005	6,495	95,928
изо-С ₅ Н ₁₂	1,290	92,880	82,031	10,849	88,319
н-С ₅ Н ₁₂	1,950	140,400	119,977	20,423	85,453
C ₆ H ₁₄ +	61,150	12841,500	8551,084	4290,416	66,589
Итого	100,00	$\Sigma M_i^c = 13880,1$	$\Sigma M_i^r = 9548,359$	$\Sigma M_i^{H} = 4331,741$	$R_{cm}^{r} = 68,792$

 $R_{cm}^{r} = 0,688$ - массовая доля отгона.

Средняя молекулярная масса газа:

$$M_{cp}^{\Gamma} = \sum M_i^{\Gamma} / \sum N_0^{\Gamma}$$

 $M_{cp}^{\Gamma} = 9548,359/78,935 = 120,964$

Плотность газа:

$$\rho_{CP} = \frac{M_{CP}}{22.4} \cdot \frac{T_0 \cdot P}{T \cdot P_0} = \frac{120.964 \cdot 273 \cdot 1.0}{22.4 \cdot 293 \cdot 0.1} = 48,655$$

$$\kappa z / M^3$$

Плотность газа при н. у:

$$\rho_{CP} = \frac{M_{CP}}{22,4} = 5,4$$
 $\kappa = 2/M$

Таблица 2.12.

Характеристика газа, выделяющегося в сепараторе

Компонент	Молярная концентрация	Молеку лярная	Массовый состав $[N_0^{r_i}/\Sigma N_0^{r_i}]$. $M_i^{-1}00$, %	Содержание тяжёлых углеводородов $[N_0^{r_i}/\Sigma N_0^{r_i}]$. M_i
	$N_0^{r_i}/\sum N_0^{r_i}$	масса	M_{cp}^{Γ}	$\rho_{\rm cp}^{-1}0^3, \Gamma/M^3 M_{\rm cp}^{-\Gamma}$
		(M_i)		
CO_2	0,0031657	44	0,1151489	
N_2	0,0030392	28	0,0703492	
CH ₄	0,3565701	16	4,7163717	
C_2H_6	0,0206845	30	0,5129895	
C_3H_8	0,0180848	44	0,6578233	320,065
изо-С ₄ Н ₁₀	0,0136342	58	0,6537325	318,075
н-С ₄ Н ₁₀	0,03342	58	1,6024233	779,662
изо-С ₅ Н ₁₂	0,0144335	72	0,8591081	418
н-С ₅ Н ₁₂	0,0211102	72	1,2565164	611,36
C ₆ H ₁₄ +	0,5158579	210	89,555537	43573,4
Итого	1		100	46020,6

Составим материальный баланс блока без сбора воды:

$$Q_{\Gamma} = R_{cM}^{3}$$

$$^{\Gamma}$$
. Q_{H} , $Q_{\Gamma} = 0.688.92.857 = 63.878 \text{ T/H}$.

Из сепаратора будет выходить поток жидкого продукта, с производительностью $Q_{\scriptscriptstyle H}^{\scriptscriptstyle \text{сеп}}$ по нефти и общей производительностью $Q^{\scriptscriptstyle \text{сеп}}$, соответственно:

$$\begin{split} Q_{_{\rm H}}{}^{\rm cen} &= Q_{_{\rm H}} \text{ - } Q_{_{\Gamma}} = 92,8573 \text{ - } 63878 = 28,979 \text{ T/Y}, \\ Q^{\rm cen} &= Q_{_{\rm H}}{}^{\rm cen} \text{+ } Q_{_{\rm I}} H_2O = 8,979 + 26,19 = 55,17 \text{ T/Y}. \end{split}$$

Данные по расчету блока сепарации второй ступени сводим в табл.2.13.

Таблица 2.13.Материальный баланс второй ступени сепарации

приход пасход		Приход	Расход
---------------	--	--------	--------

	%масс	т/ч	т/г		%масс	т/ч	т/г
Эмульсия				Эмульсия	46,34		
в том числе:				в том числе:			
нефть	73,035	92,86	780000	нефть	52,53	28,98	243424,63
вода	20,60	26, 19	220000	вода	47,47	26, 19	220000
				Всего	100,00	55,17	463424,63
ИТОГО	93,635	119,048	1000000	Газ	53,66	63,87802	536575,37
				ИТОГО	100,00	119,05	1000000,0

2.3 ОБЩИЙ МАТЕРИАЛЬНЫЙ БАЛАНС УСТАНОВКИ

На основе материальных балансов отдельных стадий составляем общий материальный баланс установки подготовки нефти, представленный в табл. 2.14.

Таблица 2.14. Общий материальный баланс установки

		Приход				Расход	
	%	кг/ч	т/г		% масс	кг/ч	т/г
	масс						
Эмульсия				Подготовленная			
в том				нефть			
числе:							
нефть	153	187,9	790000	в том числе:			
вода	40,6	49,99	210000	нефть	52,53	28,98	243424,63
				вода	20,950	23,81	200000,0
				Газ	4,536	5,40	45360,8
Итого	193,6	237,89	1000000	Итого	100,0	119,05	1000000,0

ЗАКЛЮЧЕНИЕ

В ходе работы курсового проекта был произведен расчет материального баланса установки предварительного сброса воды (УПСВ), в результате расчета приходи и расхода 1-ой ступени сепарации составил:

	Приход			Расход			
	%масс	т/ч	т/г		%масс	т/ч	т/г
Эмульсия				Эмульсия	95,464		
в том числе:				в том числе:			
нефть	80,0	95,2	800000,0	нефть	79,050	89,84	754639,2
вода	20,0	23,8	200000,0	вода	20,950	23,81	200000,0
				Всего	100,0	113,65	954639,2
ИТОГО	100,0	119,1	1000000,0	Газ	4,536	5,40	45360,8
				ИТОГО	100,0	119,05	1000000,0

Результат расчета прихода и расхода 2-ой ступени сепарации составил:

	Приход			Расход				
	%масс	т/ч	т/г		%масс	т/ч	т/г	
Эмульсия				Эмульсия	46,34			
в том числе:				в том числе:				
нефть	73,035	92,7	780000	нефть	52,53	28,98	243424,63	
вода	20,60	26, 19	220000	вода	47,47	26, 19	220000	
				Всего	100,00	55,17	463424,63	
ИТОГО	93,635	119,048	1000000	Газ	53,66	63,87802	536575,37	
				ИТОГО	100,00	119,05	1000000,0	

На основе материальных балансов отдельных стадий получен общий материальный баланс установки

		Приход				Расход	
	%	кг/ч	т/г		% масс	кг/ч	T/Γ
	масс						
Эмульсия				Подготовленная			
в том				нефть			
числе:							
нефть	153	187,9	790000	в том числе:			

вода	40,6	49,99	210000	нефть	52,53	28,98	243424,63
				вода	20,950	23,81	200000,0
				Газ	4,536	5,40	45360,8
Итого	193,6	237,89	1000000	Итого	100,0	119,05	1000000,0

Объем продукции на входе (подготовленная нефть) и на выходе (товарная нефть) установки предварительного сброса воды (УПСВ) имеет равные значения составляет 1,0 млн. т/г., это подтверждает правильность расчета материального баланса.

Список литературы

- 1. Леонтьев С. А, Галикеев Р.М., Фоминых О.В. "Расчет технологических установок системы сбора и подготовки скважинной продукции". Учебное пособие, Тюмень, ТюмГНГУ, 2010.
- 2. Сбор, подготовка и хранение нефти и газа. Технологии т оборудование: учебное пособие / Р.С. Сулейманов, А.Р. Хафизов, В.В. Шайдаков и др. Уфа: "Нефтегазовое дело", 2007 450 с.
- . Лутошкин Г.С., Сборник задач по сбору и подготовки нефти, газа и воды на промыслах: учебное пособие для вузов. Г.С. Лутошкин и И.И. Дунюшкин М; Недра 1985 135 с.
- . Расчеты основных процессов и аппаратов нефтегазоразработки, справочник. Г.Г. Рабинович, П.М. Рябых, П.А. Хохряков и др.; Под. ред. Е.Н. Судака. 3 изд., перераб. и доп. М.; Химия, 1979 568 с.
- . Лутошкин Г.С., Сбор и подготовка нефти газа и воды. М.; "Недра", 1974 184 с.